File size: 37,774 Bytes
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa24cb4
 
 
33e71b2
aa24cb4
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112bf3b
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa24cb4
33e71b2
aa24cb4
 
33e71b2
 
112bf3b
33e71b2
 
 
 
 
 
 
 
 
aa24cb4
 
 
 
33e71b2
 
 
 
 
 
 
aa24cb4
33e71b2
 
 
 
aa24cb4
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa24cb4
33e71b2
 
 
 
aa24cb4
 
33e71b2
 
 
 
112bf3b
33e71b2
 
112bf3b
33e71b2
 
 
112bf3b
 
 
 
 
 
 
aa24cb4
 
33e71b2
112bf3b
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa24cb4
112bf3b
aa24cb4
 
 
 
 
 
 
 
33e71b2
 
aa24cb4
33e71b2
 
 
 
 
 
aa24cb4
33e71b2
aa24cb4
33e71b2
 
 
 
 
 
aa24cb4
33e71b2
 
 
 
112bf3b
 
 
 
 
 
 
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa24cb4
 
 
 
 
 
 
33e71b2
 
 
 
 
aa24cb4
33e71b2
 
 
 
aa24cb4
33e71b2
 
 
 
 
 
 
 
 
 
 
aa24cb4
33e71b2
aa24cb4
 
 
 
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112bf3b
 
 
33e71b2
 
 
 
 
 
 
 
 
 
 
 
112bf3b
aa24cb4
 
 
33e71b2
 
 
 
 
 
 
aa24cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e71b2
 
 
aa24cb4
 
33e71b2
 
aa24cb4
 
 
 
 
 
 
 
 
 
33e71b2
aa24cb4
33e71b2
 
 
 
aa24cb4
33e71b2
 
aa24cb4
 
33e71b2
 
 
 
 
 
 
 
 
aa24cb4
33e71b2
 
 
 
aa24cb4
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa24cb4
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa24cb4
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
aa24cb4
33e71b2
aa24cb4
33e71b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa24cb4
 
 
 
 
33e71b2
 
aa24cb4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Common modules
"""

import json
import math
import platform
import warnings
from collections import OrderedDict, namedtuple
from copy import copy
from pathlib import Path

import cv2
import numpy as np
import pandas as pd
import requests
import torch
import torch.nn as nn
from PIL import Image
from torch.cuda import amp

from utils.dataloaders import exif_transpose, letterbox
from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
                           increment_path, make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh,
                           yaml_load)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import copy_attr, smart_inference_mode


def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))


class DWConv(Conv):
    # Depth-wise convolution class
    def __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class DWConvTranspose2d(nn.ConvTranspose2d):
    # Depth-wise transpose convolution class
    def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):  # ch_in, ch_out, kernel, stride, padding, padding_out
        super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))


class TransformerLayer(nn.Module):
    # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
    def __init__(self, c, num_heads):
        super().__init__()
        self.q = nn.Linear(c, c, bias=False)
        self.k = nn.Linear(c, c, bias=False)
        self.v = nn.Linear(c, c, bias=False)
        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
        self.fc1 = nn.Linear(c, c, bias=False)
        self.fc2 = nn.Linear(c, c, bias=False)

    def forward(self, x):
        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
        x = self.fc2(self.fc1(x)) + x
        return x


class TransformerBlock(nn.Module):
    # Vision Transformer https://arxiv.org/abs/2010.11929
    def __init__(self, c1, c2, num_heads, num_layers):
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)
        self.linear = nn.Linear(c2, c2)  # learnable position embedding
        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
        self.c2 = c2

    def forward(self, x):
        if self.conv is not None:
            x = self.conv(x)
        b, _, w, h = x.shape
        p = x.flatten(2).permute(2, 0, 1)
        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)


class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class BottleneckCSP(nn.Module):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.SiLU()
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))


class CrossConv(nn.Module):
    # Cross Convolution Downsample
    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
        # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, (1, k), (1, s))
        self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))


class C3x(C3):
    # C3 module with cross-convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)))


class C3TR(C3):
    # C3 module with TransformerBlock()
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = TransformerBlock(c_, c_, 4, n)


class C3SPP(C3):
    # C3 module with SPP()
    def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = SPP(c_, c_, k)


class C3Ghost(C3):
    # C3 module with GhostBottleneck()
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))


class SPP(nn.Module):
    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
    def __init__(self, c1, c2, k=(5, 9, 13)):
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))


class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))


class Focus(nn.Module):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
        # self.contract = Contract(gain=2)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
        # return self.conv(self.contract(x))


class GhostConv(nn.Module):
    # Ghost Convolution https://github.com/huawei-noah/ghostnet
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):  # ch_in, ch_out, kernel, stride, groups
        super().__init__()
        c_ = c2 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, k, s, None, g, act)
        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)

    def forward(self, x):
        y = self.cv1(x)
        return torch.cat((y, self.cv2(y)), 1)


class GhostBottleneck(nn.Module):
    # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
    def __init__(self, c1, c2, k=3, s=1):  # ch_in, ch_out, kernel, stride
        super().__init__()
        c_ = c2 // 2
        self.conv = nn.Sequential(
            GhostConv(c1, c_, 1, 1),  # pw
            DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
            GhostConv(c_, c2, 1, 1, act=False))  # pw-linear
        self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
                                                                            act=False)) if s == 2 else nn.Identity()

    def forward(self, x):
        return self.conv(x) + self.shortcut(x)


class Contract(nn.Module):
    # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
    def __init__(self, gain=2):
        super().__init__()
        self.gain = gain

    def forward(self, x):
        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
        s = self.gain
        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)
        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)


class Expand(nn.Module):
    # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
    def __init__(self, gain=2):
        super().__init__()
        self.gain = gain

    def forward(self, x):
        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'
        s = self.gain
        x = x.view(b, s, s, c // s ** 2, h, w)  # x(1,2,2,16,80,80)
        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)
        return x.view(b, c // s ** 2, h * s, w * s)  # x(1,16,160,160)


class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, dimension=1):
        super().__init__()
        self.d = dimension

    def forward(self, x):
        return torch.cat(x, self.d)


class DetectMultiBackend(nn.Module):
    # YOLOv5 MultiBackend class for python inference on various backends
    def __init__(self, weights='yolov5s.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
        # Usage:
        #   PyTorch:              weights = *.pt
        #   TorchScript:                    *.torchscript
        #   ONNX Runtime:                   *.onnx
        #   ONNX OpenCV DNN:                *.onnx with --dnn
        #   OpenVINO:                       *.xml
        #   CoreML:                         *.mlmodel
        #   TensorRT:                       *.engine
        #   TensorFlow SavedModel:          *_saved_model
        #   TensorFlow GraphDef:            *.pb
        #   TensorFlow Lite:                *.tflite
        #   TensorFlow Edge TPU:            *_edgetpu.tflite
        from models.experimental import attempt_download, attempt_load  # scoped to avoid circular import

        super().__init__()
        w = str(weights[0] if isinstance(weights, list) else weights)
        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self._model_type(w)  # get backend
        w = attempt_download(w)  # download if not local
        fp16 &= pt or jit or onnx or engine  # FP16
        stride = 32  # default stride

        if pt:  # PyTorch
            model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
            stride = max(int(model.stride.max()), 32)  # model stride
            names = model.module.names if hasattr(model, 'module') else model.names  # get class names
            model.half() if fp16 else model.float()
            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
        elif jit:  # TorchScript
            LOGGER.info(f'Loading {w} for TorchScript inference...')
            extra_files = {'config.txt': ''}  # model metadata
            model = torch.jit.load(w, _extra_files=extra_files)
            model.half() if fp16 else model.float()
            if extra_files['config.txt']:  # load metadata dict
                d = json.loads(extra_files['config.txt'],
                               object_hook=lambda d: {int(k) if k.isdigit() else k: v
                                                      for k, v in d.items()})
                stride, names = int(d['stride']), d['names']
        elif dnn:  # ONNX OpenCV DNN
            LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
            check_requirements(('opencv-python>=4.5.4',))
            net = cv2.dnn.readNetFromONNX(w)
        elif onnx:  # ONNX Runtime
            LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
            cuda = torch.cuda.is_available() and device.type != 'cpu'
            check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
            import onnxruntime
            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
            session = onnxruntime.InferenceSession(w, providers=providers)
            output_names = [x.name for x in session.get_outputs()]
            meta = session.get_modelmeta().custom_metadata_map  # metadata
            if 'stride' in meta:
                stride, names = int(meta['stride']), eval(meta['names'])
        elif xml:  # OpenVINO
            LOGGER.info(f'Loading {w} for OpenVINO inference...')
            check_requirements(('openvino',))  # requires openvino-dev: https://pypi.org/project/openvino-dev/
            from openvino.runtime import Core, Layout, get_batch
            ie = Core()
            if not Path(w).is_file():  # if not *.xml
                w = next(Path(w).glob('*.xml'))  # get *.xml file from *_openvino_model dir
            network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
            if network.get_parameters()[0].get_layout().empty:
                network.get_parameters()[0].set_layout(Layout("NCHW"))
            batch_dim = get_batch(network)
            if batch_dim.is_static:
                batch_size = batch_dim.get_length()
            executable_network = ie.compile_model(network, device_name="CPU")  # device_name="MYRIAD" for Intel NCS2
            output_layer = next(iter(executable_network.outputs))
            stride, names = self._load_metadata(Path(w).with_suffix('.yaml'))  # load metadata
        elif engine:  # TensorRT
            LOGGER.info(f'Loading {w} for TensorRT inference...')
            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
            check_version(trt.__version__, '7.0.0', hard=True)  # require tensorrt>=7.0.0
            if device.type == 'cpu':
                device = torch.device('cuda:0')
            Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
            logger = trt.Logger(trt.Logger.INFO)
            with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
                model = runtime.deserialize_cuda_engine(f.read())
            context = model.create_execution_context()
            bindings = OrderedDict()
            fp16 = False  # default updated below
            dynamic = False
            for index in range(model.num_bindings):
                name = model.get_binding_name(index)
                dtype = trt.nptype(model.get_binding_dtype(index))
                if model.binding_is_input(index):
                    if -1 in tuple(model.get_binding_shape(index)):  # dynamic
                        dynamic = True
                        context.set_binding_shape(index, tuple(model.get_profile_shape(0, index)[2]))
                    if dtype == np.float16:
                        fp16 = True
                shape = tuple(context.get_binding_shape(index))
                im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
                bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
            binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
            batch_size = bindings['images'].shape[0]  # if dynamic, this is instead max batch size
        elif coreml:  # CoreML
            LOGGER.info(f'Loading {w} for CoreML inference...')
            import coremltools as ct
            model = ct.models.MLModel(w)
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            if saved_model:  # SavedModel
                LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
                import tensorflow as tf
                keras = False  # assume TF1 saved_model
                model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
            elif pb:  # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
                LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
                import tensorflow as tf

                def wrap_frozen_graph(gd, inputs, outputs):
                    x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped
                    ge = x.graph.as_graph_element
                    return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))

                gd = tf.Graph().as_graph_def()  # graph_def
                with open(w, 'rb') as f:
                    gd.ParseFromString(f.read())
                frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
            elif tflite or edgetpu:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
                try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
                    from tflite_runtime.interpreter import Interpreter, load_delegate
                except ImportError:
                    import tensorflow as tf
                    Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
                if edgetpu:  # Edge TPU https://coral.ai/software/#edgetpu-runtime
                    LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
                    delegate = {
                        'Linux': 'libedgetpu.so.1',
                        'Darwin': 'libedgetpu.1.dylib',
                        'Windows': 'edgetpu.dll'}[platform.system()]
                    interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
                else:  # Lite
                    LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
                    interpreter = Interpreter(model_path=w)  # load TFLite model
                interpreter.allocate_tensors()  # allocate
                input_details = interpreter.get_input_details()  # inputs
                output_details = interpreter.get_output_details()  # outputs
            elif tfjs:
                raise NotImplementedError('ERROR: YOLOv5 TF.js inference is not supported')
            else:
                raise NotImplementedError(f'ERROR: {w} is not a supported format')

        # class names
        if 'names' not in locals():
            names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
        if names[0] == 'n01440764' and len(names) == 1000:  # ImageNet
            names = yaml_load(ROOT / 'data/ImageNet.yaml')['names']  # human-readable names

        self.__dict__.update(locals())  # assign all variables to self

    def forward(self, im, augment=False, visualize=False):
        # YOLOv5 MultiBackend inference
        b, ch, h, w = im.shape  # batch, channel, height, width
        if self.fp16 and im.dtype != torch.float16:
            im = im.half()  # to FP16

        if self.pt:  # PyTorch
            y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
        elif self.jit:  # TorchScript
            y = self.model(im)
        elif self.dnn:  # ONNX OpenCV DNN
            im = im.cpu().numpy()  # torch to numpy
            self.net.setInput(im)
            y = self.net.forward()
        elif self.onnx:  # ONNX Runtime
            im = im.cpu().numpy()  # torch to numpy
            y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
        elif self.xml:  # OpenVINO
            im = im.cpu().numpy()  # FP32
            y = self.executable_network([im])[self.output_layer]
        elif self.engine:  # TensorRT
            if self.dynamic and im.shape != self.bindings['images'].shape:
                i_in, i_out = (self.model.get_binding_index(x) for x in ('images', 'output'))
                self.context.set_binding_shape(i_in, im.shape)  # reshape if dynamic
                self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
                self.bindings['output'].data.resize_(tuple(self.context.get_binding_shape(i_out)))
            s = self.bindings['images'].shape
            assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
            self.binding_addrs['images'] = int(im.data_ptr())
            self.context.execute_v2(list(self.binding_addrs.values()))
            y = self.bindings['output'].data
        elif self.coreml:  # CoreML
            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
            im = Image.fromarray((im[0] * 255).astype('uint8'))
            # im = im.resize((192, 320), Image.ANTIALIAS)
            y = self.model.predict({'image': im})  # coordinates are xywh normalized
            if 'confidence' in y:
                box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
                conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
                y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
            else:
                k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1])  # output key
                y = y[k]  # output
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
            if self.saved_model:  # SavedModel
                y = (self.model(im, training=False) if self.keras else self.model(im)).numpy()
            elif self.pb:  # GraphDef
                y = self.frozen_func(x=self.tf.constant(im)).numpy()
            else:  # Lite or Edge TPU
                input, output = self.input_details[0], self.output_details[0]
                int8 = input['dtype'] == np.uint8  # is TFLite quantized uint8 model
                if int8:
                    scale, zero_point = input['quantization']
                    im = (im / scale + zero_point).astype(np.uint8)  # de-scale
                self.interpreter.set_tensor(input['index'], im)
                self.interpreter.invoke()
                y = self.interpreter.get_tensor(output['index'])
                if int8:
                    scale, zero_point = output['quantization']
                    y = (y.astype(np.float32) - zero_point) * scale  # re-scale
            y[..., :4] *= [w, h, w, h]  # xywh normalized to pixels

        if isinstance(y, (list, tuple)):
            return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
        else:
            return self.from_numpy(y)

    def from_numpy(self, x):
        return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x

    def warmup(self, imgsz=(1, 3, 640, 640)):
        # Warmup model by running inference once
        warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb
        if any(warmup_types) and self.device.type != 'cpu':
            im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device)  # input
            for _ in range(2 if self.jit else 1):  #
                self.forward(im)  # warmup

    @staticmethod
    def _model_type(p='path/to/model.pt'):
        # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
        from export import export_formats
        suffixes = list(export_formats().Suffix) + ['.xml']  # export suffixes
        check_suffix(p, suffixes)  # checks
        p = Path(p).name  # eliminate trailing separators
        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
        xml |= xml2  # *_openvino_model or *.xml
        tflite &= not edgetpu  # *.tflite
        return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs

    @staticmethod
    def _load_metadata(f=Path('path/to/meta.yaml')):
        # Load metadata from meta.yaml if it exists
        if f.exists():
            d = yaml_load(f)
            return d['stride'], d['names']  # assign stride, names
        return None, None


class AutoShape(nn.Module):
    # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
    conf = 0.25  # NMS confidence threshold
    iou = 0.45  # NMS IoU threshold
    agnostic = False  # NMS class-agnostic
    multi_label = False  # NMS multiple labels per box
    classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
    max_det = 1000  # maximum number of detections per image
    amp = False  # Automatic Mixed Precision (AMP) inference

    def __init__(self, model, verbose=True):
        super().__init__()
        if verbose:
            LOGGER.info('Adding AutoShape... ')
        copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=())  # copy attributes
        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
        self.pt = not self.dmb or model.pt  # PyTorch model
        self.model = model.eval()
        if self.pt:
            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
            m.inplace = False  # Detect.inplace=False for safe multithread inference

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        if self.pt:
            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

    @smart_inference_mode()
    def forward(self, ims, size=640, augment=False, profile=False):
        # Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
        #   file:        ims = 'data/images/zidane.jpg'  # str or PosixPath
        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
        #   numpy:           = np.zeros((640,1280,3))  # HWC
        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

        dt = (Profile(), Profile(), Profile())
        with dt[0]:
            if isinstance(size, int):  # expand
                size = (size, size)
            p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device)  # param
            autocast = self.amp and (p.device.type != 'cpu')  # Automatic Mixed Precision (AMP) inference
            if isinstance(ims, torch.Tensor):  # torch
                with amp.autocast(autocast):
                    return self.model(ims.to(p.device).type_as(p), augment, profile)  # inference

            # Pre-process
            n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims])  # number, list of images
            shape0, shape1, files = [], [], []  # image and inference shapes, filenames
            for i, im in enumerate(ims):
                f = f'image{i}'  # filename
                if isinstance(im, (str, Path)):  # filename or uri
                    im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
                    im = np.asarray(exif_transpose(im))
                elif isinstance(im, Image.Image):  # PIL Image
                    im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
                files.append(Path(f).with_suffix('.jpg').name)
                if im.shape[0] < 5:  # image in CHW
                    im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
                im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)  # enforce 3ch input
                s = im.shape[:2]  # HWC
                shape0.append(s)  # image shape
                g = max(size) / max(s)  # gain
                shape1.append([y * g for y in s])
                ims[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
            shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size  # inf shape
            x = [letterbox(im, shape1, auto=False)[0] for im in ims]  # pad
            x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2)))  # stack and BHWC to BCHW
            x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32

        with amp.autocast(autocast):
            # Inference
            with dt[1]:
                y = self.model(x, augment, profile)  # forward

            # Post-process
            with dt[2]:
                y = non_max_suppression(y if self.dmb else y[0],
                                        self.conf,
                                        self.iou,
                                        self.classes,
                                        self.agnostic,
                                        self.multi_label,
                                        max_det=self.max_det)  # NMS
                for i in range(n):
                    scale_coords(shape1, y[i][:, :4], shape0[i])

            return Detections(ims, y, files, dt, self.names, x.shape)


class Detections:
    # YOLOv5 detections class for inference results
    def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
        super().__init__()
        d = pred[0].device  # device
        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims]  # normalizations
        self.ims = ims  # list of images as numpy arrays
        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
        self.names = names  # class names
        self.files = files  # image filenames
        self.times = times  # profiling times
        self.xyxy = pred  # xyxy pixels
        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
        self.n = len(self.pred)  # number of images (batch size)
        self.t = tuple(x.t / self.n * 1E3 for x in times)  # timestamps (ms)
        self.s = shape  # inference BCHW shape

    def display(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
        crops = []
        for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
            s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '  # string
            if pred.shape[0]:
                for c in pred[:, -1].unique():
                    n = (pred[:, -1] == c).sum()  # detections per class
                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
                if show or save or render or crop:
                    annotator = Annotator(im, example=str(self.names))
                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
                        label = f'{self.names[int(cls)]} {conf:.2f}'
                        if crop:
                            file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
                            crops.append({
                                'box': box,
                                'conf': conf,
                                'cls': cls,
                                'label': label,
                                'im': save_one_box(box, im, file=file, save=save)})
                        else:  # all others
                            annotator.box_label(box, label if labels else '', color=colors(cls))
                    im = annotator.im
            else:
                s += '(no detections)'

            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
            if pprint:
                print(s.rstrip(', '))
            if show:
                im.show(self.files[i])  # show
            if save:
                f = self.files[i]
                im.save(save_dir / f)  # save
                if i == self.n - 1:
                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
            if render:
                self.ims[i] = np.asarray(im)
        if crop:
            if save:
                LOGGER.info(f'Saved results to {save_dir}\n')
            return crops

    def print(self):
        self.display(pprint=True)  # print results
        print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)

    def show(self, labels=True):
        self.display(show=True, labels=labels)  # show results

    def save(self, labels=True, save_dir='runs/detect/exp'):
        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True)  # increment save_dir
        self.display(save=True, labels=labels, save_dir=save_dir)  # save results

    def crop(self, save=True, save_dir='runs/detect/exp'):
        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
        return self.display(crop=True, save=save, save_dir=save_dir)  # crop results

    def render(self, labels=True):
        self.display(render=True, labels=labels)  # render results
        return self.ims

    def pandas(self):
        # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
        new = copy(self)  # return copy
        ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name'  # xyxy columns
        cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name'  # xywh columns
        for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update
            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
        return new

    def tolist(self):
        # return a list of Detections objects, i.e. 'for result in results.tolist():'
        r = range(self.n)  # iterable
        x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
        # for d in x:
        #    for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
        #        setattr(d, k, getattr(d, k)[0])  # pop out of list
        return x

    def __len__(self):
        return self.n  # override len(results)

    def __str__(self):
        self.print()  # override print(results)
        return ''


class Classify(nn.Module):
    # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        c_ = 1280  # efficientnet_b0 size
        self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
        self.pool = nn.AdaptiveAvgPool2d(1)  # to x(b,c_,1,1)
        self.drop = nn.Dropout(p=0.0, inplace=True)
        self.linear = nn.Linear(c_, c2)  # to x(b,c2)

    def forward(self, x):
        if isinstance(x, list):
            x = torch.cat(x, 1)
        return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))