Spaces:
Runtime error
Runtime error
# Streamlit YOLOv5 Model2X v0.2 | |
# 创建人:曾逸夫 | |
# 创建时间:2022-07-17 | |
# 功能描述:多选,多项模型转换和打包下载 | |
import os | |
import shutil | |
import time | |
import zipfile | |
import streamlit as st | |
# 目录操作 | |
def dir_opt(target_dir): | |
if os.path.exists(target_dir): | |
shutil.rmtree(target_dir) | |
os.mkdir(target_dir) | |
else: | |
os.mkdir(target_dir) | |
# 文件下载 | |
def download_file(uploaded_file): | |
# --------------- 下载 --------------- | |
with open(f"{uploaded_file}", 'rb') as fmodel: | |
# 读取转换的模型文件(pt2x) | |
f_download_model = fmodel.read() | |
st.download_button(label='下载转换后的模型', data=f_download_model, file_name=f"{uploaded_file}") | |
fmodel.close() | |
# 文件压缩 | |
def zipDir(origin_dir, compress_file): | |
# --------------- 压缩 --------------- | |
zip = zipfile.ZipFile(f"{compress_file}", "w", zipfile.ZIP_DEFLATED) | |
for path, dirnames, filenames in os.walk(f"{origin_dir}"): | |
fpath = path.replace(f"{origin_dir}", '') | |
for filename in filenames: | |
zip.write(os.path.join(path, filename), os.path.join(fpath, filename)) | |
zip.close() | |
# params_include_list = ["torchscript", "onnx", "openvino", "engine", "coreml", "saved_model", "pb", "tflite", "tfjs"] | |
def cb_opt(device, imgSize, weight_name, btn_model_list, params_include_list, iou_conf, tflite_options, onnx_options, | |
torchscript_options): | |
for i in range(len(btn_model_list)): | |
if btn_model_list[i]: | |
st.info(f"正在转换{params_include_list[i]}......") | |
s = time.time() | |
if i == 0: # torchscript | |
os.system( | |
f"python export.py --device {device} --imgsz {imgSize} --weights ./weights/{weight_name} --include {params_include_list[i]} " | |
+ "".join([f"--{x} " for x in torchscript_options])) | |
if i == 1: # onnx | |
os.system( | |
f"python export.py --device {device} --imgsz {imgSize} --weights ./weights/{weight_name} --include {params_include_list[i]} " | |
+ "".join([f"--{x} " for x in onnx_options])) | |
if i == 3: | |
# TensorRT需要在GPU模式下导出 | |
pass | |
# os.system( | |
# f"python export.py --imgsz {imgSize} --weights ./weights/{weight_name} --include {params_include_list[i]} --device 0" | |
# ) | |
elif i == 8: # tfjs | |
os.system( | |
f"python export.py --device {device} --imgsz {imgSize} --weights ./weights/{weight_name} --include {params_include_list[i]} --iou-thres {iou_conf[0]} --conf-thres {iou_conf[1]}" | |
) | |
elif i == 7: # tflite | |
# 参考:https://github.com/zldrobit/yolov5 | |
os.system( | |
f"python export.py --device {device} --imgsz {imgSize} --weights ./weights/{weight_name} --include {params_include_list[i]} " | |
+ "".join([f"--{x} " for x in tflite_options])) | |
else: | |
os.system( | |
f"python export.py --device {device} --imgsz {imgSize} --weights ./weights/{weight_name} --include {params_include_list[i]}" | |
) | |
e = time.time() | |
st.success(f"{params_include_list[i]}转换完成,用时{round((e-s), 2)}秒") | |
zipDir("./weights", "convert_weights.zip") # 打包weights目录,包括原始权重和转换后的权重 | |
download_file("convert_weights.zip") # 下载打包文件 | |
def main(): | |
with st.container(): | |
st.title("Streamlit YOLOv5 Model2X") | |
st.text("基于Streamlit的YOLOv5模型转换工具") | |
st.write("-------------------------------------------------------------") | |
dir_opt("./weights") | |
uploaded_file = st.file_uploader("选择YOLOv5模型文件(.pt)") | |
if uploaded_file is not None: | |
# 读取上传的模型文件(.pt) | |
weight_name = uploaded_file.name | |
st.info(f"正在写入{weight_name}......") | |
bytes_data = uploaded_file.getvalue() | |
with open(f"./weights/{weight_name}", 'wb') as fb: | |
fb.write(bytes_data) | |
fb.close() | |
st.success(f"{weight_name}写入成功!") | |
device = st.radio("请选择设备", ('cpu', 'cuda:0'), index=0) | |
imgSize = st.radio("请选择图片尺寸", (320, 640, 1280), index=1) | |
st.text("请选择转换的类型:") | |
cb_torchscript = st.checkbox('TorchScript') | |
# ------------- torchscript ------------- | |
if cb_torchscript: | |
torchscript_options = st.multiselect('onnx选项', ['optimize']) | |
else: | |
torchscript_options = [] | |
cb_onnx = st.checkbox('ONNX') | |
# ------------- onnx ------------- | |
if cb_onnx: | |
onnx_options = st.multiselect('onnx选项', ['dynamic', 'simplify']) | |
else: | |
onnx_options = [] | |
cb_openvino = st.checkbox('OpenVINO') | |
cb_engine = st.checkbox('TensorRT') | |
cb_coreml = st.checkbox('CoreML') | |
cb_saved_model = st.checkbox('TensorFlow SavedModel') | |
cb_pb = st.checkbox('TensorFlow GraphDef') | |
cb_tflite = st.checkbox('TensorFlow Lite') | |
# ------------- tflite ------------- | |
if cb_tflite: | |
tflite_options = st.multiselect('tflite选项', ['int8', 'nms', 'agnostic-nms']) | |
else: | |
tflite_options = [] | |
# cb_edgetpu = st.checkbox('TensorFlow Edge TPU') | |
cb_tfjs = st.checkbox('TensorFlow.js') | |
# ------------- tfjs ------------- | |
if cb_tfjs: | |
iou_thres = st.slider(label='NMS IoU', min_value=0.0, max_value=1.0, value=0.45, step=0.05) | |
conf_thres = st.slider(label='NMS CONF', min_value=0.0, max_value=1.0, value=0.5, step=0.05) | |
else: | |
iou_thres, conf_thres = 0.45, 0.5 | |
btn_convert = st.button('转换') | |
btn_model_list = [ | |
cb_torchscript, cb_onnx, cb_openvino, cb_engine, cb_coreml, cb_saved_model, cb_pb, cb_tflite, cb_tfjs] | |
params_include_list = [ | |
"torchscript", "onnx", "openvino", "engine", "coreml", "saved_model", "pb", "tflite", "tfjs"] | |
if btn_convert: | |
cb_opt(device, imgSize, weight_name, btn_model_list, params_include_list, [iou_thres, conf_thres], | |
tflite_options, onnx_options, torchscript_options) | |
st.write("-------------------------------------------------------------") | |
if __name__ == "__main__": | |
main() | |