|
import uuid |
|
|
|
import gradio as gr |
|
|
|
from io_utils import get_logs_file, read_scanners, write_scanners |
|
from text_classification_ui_helpers import ( |
|
get_related_datasets_from_leaderboard, |
|
align_columns_and_show_prediction, |
|
check_dataset, |
|
precheck_model_ds_enable_example_btn, |
|
try_submit, |
|
write_column_mapping_to_config, |
|
) |
|
from wordings import CONFIRM_MAPPING_DETAILS_MD, INTRODUCTION_MD, USE_INFERENCE_API_TIP |
|
|
|
MAX_LABELS = 40 |
|
MAX_FEATURES = 20 |
|
|
|
EXAMPLE_MODEL_ID = "cardiffnlp/twitter-roberta-base-sentiment-latest" |
|
CONFIG_PATH = "./config.yaml" |
|
|
|
|
|
def get_demo(): |
|
with gr.Row(): |
|
gr.Markdown(INTRODUCTION_MD) |
|
uid_label = gr.Textbox( |
|
label="Evaluation ID:", value=uuid.uuid4, visible=False, interactive=False |
|
) |
|
with gr.Row(): |
|
model_id_input = gr.Textbox( |
|
label="Hugging Face model id", |
|
placeholder=EXAMPLE_MODEL_ID + " (press enter to confirm)", |
|
) |
|
|
|
with gr.Column(): |
|
dataset_id_input = gr.Dropdown( |
|
choices=[], |
|
value="", |
|
allow_custom_value=True, |
|
label="Hugging Face Dataset id", |
|
) |
|
|
|
with gr.Row(): |
|
dataset_config_input = gr.Dropdown(label="Dataset Config", visible=False, allow_custom_value=True) |
|
dataset_split_input = gr.Dropdown(label="Dataset Split", visible=False, allow_custom_value=True) |
|
|
|
with gr.Row(): |
|
first_line_ds = gr.DataFrame(label="Dataset preview", visible=False) |
|
with gr.Row(): |
|
loading_status = gr.HTML(visible=True) |
|
with gr.Row(): |
|
example_btn = gr.Button( |
|
"Validate model & dataset", |
|
visible=True, |
|
variant="primary", |
|
interactive=False, |
|
) |
|
|
|
with gr.Row(): |
|
example_input = gr.HTML(visible=False) |
|
with gr.Row(): |
|
example_prediction = gr.Label(label="Model Prediction Sample", visible=False) |
|
|
|
with gr.Row(): |
|
with gr.Accordion( |
|
label="Label and Feature Mapping", visible=False, open=False |
|
) as column_mapping_accordion: |
|
with gr.Row(): |
|
gr.Markdown(CONFIRM_MAPPING_DETAILS_MD) |
|
column_mappings = [] |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("# Label Mapping") |
|
for _ in range(MAX_LABELS): |
|
column_mappings.append(gr.Dropdown(visible=False)) |
|
with gr.Column(): |
|
gr.Markdown("# Feature Mapping") |
|
for _ in range(MAX_LABELS, MAX_LABELS + MAX_FEATURES): |
|
column_mappings.append(gr.Dropdown(visible=False)) |
|
|
|
with gr.Accordion(label="Model Wrap Advance Config", open=True): |
|
gr.HTML(USE_INFERENCE_API_TIP) |
|
|
|
run_inference = gr.Checkbox(value=True, label="Run with Inference API") |
|
inference_token = gr.Textbox( |
|
placeholder="hf-xxxxxxxxxxxxxxxxxxxx", |
|
value="", |
|
label="HF Token for Inference API", |
|
visible=True, |
|
interactive=True, |
|
) |
|
|
|
with gr.Accordion(label="Scanner Advance Config (optional)", open=False): |
|
scanners = gr.CheckboxGroup(label="Scan Settings", visible=True) |
|
|
|
@gr.on(triggers=[uid_label.change], inputs=[uid_label], outputs=[scanners]) |
|
def get_scanners(uid): |
|
selected = read_scanners(uid) |
|
|
|
|
|
|
|
scan_config = selected + ["data_leakage"] |
|
return gr.update( |
|
choices=scan_config, value=selected, label="Scan Settings", visible=True |
|
) |
|
|
|
with gr.Row(): |
|
run_btn = gr.Button( |
|
"Get Evaluation Result", |
|
variant="primary", |
|
interactive=False, |
|
size="lg", |
|
) |
|
|
|
with gr.Row(): |
|
logs = gr.Textbox( |
|
value=get_logs_file, |
|
label="Giskard Bot Evaluation Log:", |
|
visible=False, |
|
every=0.5, |
|
) |
|
|
|
|
|
scanners.change(write_scanners, inputs=[scanners, uid_label]) |
|
|
|
gr.on( |
|
triggers=[model_id_input.change], |
|
fn=get_related_datasets_from_leaderboard, |
|
inputs=[model_id_input], |
|
outputs=[dataset_id_input], |
|
).then( |
|
fn=check_dataset, |
|
inputs=[dataset_id_input], |
|
outputs=[dataset_config_input, dataset_split_input, loading_status] |
|
) |
|
|
|
gr.on( |
|
triggers=[dataset_id_input.input], |
|
fn=check_dataset, |
|
inputs=[dataset_id_input], |
|
outputs=[dataset_config_input, dataset_split_input, loading_status] |
|
) |
|
|
|
gr.on( |
|
triggers=[label.change for label in column_mappings], |
|
fn=write_column_mapping_to_config, |
|
inputs=[ |
|
uid_label, |
|
*column_mappings, |
|
], |
|
) |
|
|
|
|
|
gr.on( |
|
triggers=[label.input for label in column_mappings], |
|
fn=write_column_mapping_to_config, |
|
inputs=[ |
|
uid_label, |
|
*column_mappings, |
|
], |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
model_id_input.change, |
|
dataset_id_input.change, |
|
dataset_config_input.change, |
|
dataset_split_input.change, |
|
], |
|
fn=precheck_model_ds_enable_example_btn, |
|
inputs=[ |
|
model_id_input, |
|
dataset_id_input, |
|
dataset_config_input, |
|
dataset_split_input, |
|
], |
|
outputs=[example_btn, first_line_ds, loading_status], |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
example_btn.click, |
|
], |
|
fn=align_columns_and_show_prediction, |
|
inputs=[ |
|
model_id_input, |
|
dataset_id_input, |
|
dataset_config_input, |
|
dataset_split_input, |
|
uid_label, |
|
run_inference, |
|
inference_token, |
|
], |
|
outputs=[ |
|
example_input, |
|
example_prediction, |
|
column_mapping_accordion, |
|
run_btn, |
|
loading_status, |
|
*column_mappings, |
|
], |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
run_btn.click, |
|
], |
|
fn=try_submit, |
|
inputs=[ |
|
model_id_input, |
|
dataset_id_input, |
|
dataset_config_input, |
|
dataset_split_input, |
|
run_inference, |
|
inference_token, |
|
uid_label, |
|
], |
|
outputs=[run_btn, logs, uid_label], |
|
) |
|
|
|
def enable_run_btn(run_inference, inference_token, model_id, dataset_id, dataset_config, dataset_split): |
|
if not run_inference or inference_token == "": |
|
return gr.update(interactive=False) |
|
if model_id == "" or dataset_id == "" or dataset_config == "" or dataset_split == "": |
|
return gr.update(interactive=False) |
|
return gr.update(interactive=True) |
|
|
|
gr.on( |
|
triggers=[ |
|
run_inference.input, |
|
inference_token.input, |
|
scanners.input, |
|
], |
|
fn=enable_run_btn, |
|
inputs=[ |
|
run_inference, |
|
inference_token, |
|
model_id_input, |
|
dataset_id_input, |
|
dataset_config_input, |
|
dataset_split_input |
|
], |
|
outputs=[run_btn], |
|
) |
|
|
|
gr.on( |
|
triggers=[label.input for label in column_mappings], |
|
fn=enable_run_btn, |
|
inputs=[ |
|
run_inference, |
|
inference_token, |
|
model_id_input, |
|
dataset_id_input, |
|
dataset_config_input, |
|
dataset_split_input |
|
], |
|
outputs=[run_btn], |
|
) |
|
|