test-giskard-evaluator / text_classification_ui_helpers.py
ZeroCommand's picture
upload files
ab16bec
raw
history blame
11.5 kB
import collections
import logging
import threading
import uuid
import datasets
import gradio as gr
import pandas as pd
import leaderboard
from io_utils import read_column_mapping, write_column_mapping
from run_jobs import save_job_to_pipe
from text_classification import (
strip_model_id_from_url,
check_model_task,
preload_hf_inference_api,
get_example_prediction,
get_labels_and_features_from_dataset,
HuggingFaceInferenceAPIResponse,
)
from wordings import (
CHECK_CONFIG_OR_SPLIT_RAW,
CONFIRM_MAPPING_DETAILS_FAIL_RAW,
MAPPING_STYLED_ERROR_WARNING,
NOT_TEXT_CLASSIFICATION_MODEL_RAW,
get_styled_input,
)
MAX_LABELS = 40
MAX_FEATURES = 20
ds_dict = None
ds_config = None
def get_related_datasets_from_leaderboard(model_id):
records = leaderboard.records
model_id = strip_model_id_from_url(model_id)
model_records = records[records["model_id"] == model_id]
datasets_unique = list(model_records["dataset_id"].unique())
if len(datasets_unique) == 0:
return gr.update(choices=[], value="")
return gr.update(choices=datasets_unique, value=datasets_unique[0])
logger = logging.getLogger(__file__)
def check_dataset(dataset_id):
logger.info(f"Loading {dataset_id}")
try:
configs = datasets.get_dataset_config_names(dataset_id)
if len(configs) == 0:
return (
gr.update(),
gr.update(),
""
)
splits = list(
datasets.load_dataset(
dataset_id, configs[0]
).keys()
)
return (
gr.update(choices=configs, value=configs[0], visible=True),
gr.update(choices=splits, value=splits[0], visible=True),
""
)
except Exception as e:
logger.warn(f"Check your dataset {dataset_id}: {e}")
return (
gr.update(),
gr.update(),
""
)
def write_column_mapping_to_config(uid, *labels):
# TODO: Substitute 'text' with more features for zero-shot
# we are not using ds features because we only support "text" for now
all_mappings = read_column_mapping(uid)
if labels is None:
return
all_mappings = export_mappings(all_mappings, "labels", None, labels[:MAX_LABELS])
all_mappings = export_mappings(
all_mappings,
"features",
["text"],
labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)],
)
write_column_mapping(all_mappings, uid)
def export_mappings(all_mappings, key, subkeys, values):
if key not in all_mappings.keys():
all_mappings[key] = dict()
if subkeys is None:
subkeys = list(all_mappings[key].keys())
if not subkeys:
logging.debug(f"subkeys is empty for {key}")
return all_mappings
for i, subkey in enumerate(subkeys):
if subkey:
all_mappings[key][subkey] = values[i % len(values)]
return all_mappings
def list_labels_and_features_from_dataset(ds_labels, ds_features, model_labels, uid):
all_mappings = read_column_mapping(uid)
# For flattened raw datasets with no labels
# check if there are shared labels between model and dataset
shared_labels = set(model_labels).intersection(set(ds_labels))
if shared_labels:
ds_labels = list(shared_labels)
if len(ds_labels) > MAX_LABELS:
ds_labels = ds_labels[:MAX_LABELS]
gr.Warning(f"The number of labels is truncated to length {MAX_LABELS}")
# sort labels to make sure the order is consistent
# prediction gives the order based on probability
ds_labels.sort()
model_labels.sort()
lables = [
gr.Dropdown(
label=f"{label}",
choices=model_labels,
value=model_labels[i % len(model_labels)],
interactive=True,
visible=True,
)
for i, label in enumerate(ds_labels)
]
lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
all_mappings = export_mappings(all_mappings, "labels", ds_labels, model_labels)
# TODO: Substitute 'text' with more features for zero-shot
features = [
gr.Dropdown(
label=f"{feature}",
choices=ds_features,
value=ds_features[0],
interactive=True,
visible=True,
)
for feature in ["text"]
]
features += [
gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
]
all_mappings = export_mappings(all_mappings, "features", ["text"], ds_features)
write_column_mapping(all_mappings, uid)
return lables + features
def precheck_model_ds_enable_example_btn(
model_id, dataset_id, dataset_config, dataset_split
):
model_id = strip_model_id_from_url(model_id)
model_task = check_model_task(model_id)
preload_hf_inference_api(model_id)
if model_task is None or model_task != "text-classification":
gr.Warning(NOT_TEXT_CLASSIFICATION_MODEL_RAW)
return (gr.update(), gr.update(),"")
if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
return (gr.update(), gr.update(), "")
try:
ds = datasets.load_dataset(dataset_id, dataset_config)
df: pd.DataFrame = ds[dataset_split].to_pandas().head(5)
ds_labels, ds_features = get_labels_and_features_from_dataset(ds[dataset_split])
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
return (gr.update(interactive=False), gr.update(value=df, visible=True), "")
return (gr.update(interactive=True), gr.update(value=df, visible=True), "")
except Exception as e:
# Config or split wrong
gr.Warning(f"Failed to load dataset {dataset_id} with config {dataset_config}: {e}")
return (gr.update(interactive=False), gr.update(value=pd.DataFrame(), visible=False), "")
def align_columns_and_show_prediction(
model_id,
dataset_id,
dataset_config,
dataset_split,
uid,
run_inference,
inference_token,
):
model_id = strip_model_id_from_url(model_id)
model_task = check_model_task(model_id)
if model_task is None or model_task != "text-classification":
gr.Warning(NOT_TEXT_CLASSIFICATION_MODEL_RAW)
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
)
dropdown_placement = [
gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
]
prediction_input, prediction_response = get_example_prediction(
model_id, dataset_id, dataset_config, dataset_split
)
if prediction_input is None or prediction_response is None:
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*dropdown_placement,
)
if isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
f"Hugging Face Inference API is loading your model. {prediction_response.message}",
*dropdown_placement,
)
model_labels = list(prediction_response.keys())
ds = datasets.load_dataset(dataset_id, dataset_config)[dataset_split]
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
# when dataset does not have labels or features
if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, open=False),
gr.update(interactive=False),
"",
*dropdown_placement,
)
column_mappings = list_labels_and_features_from_dataset(
ds_labels,
ds_features,
model_labels,
uid,
)
# when labels or features are not aligned
# show manually column mapping
if (
collections.Counter(model_labels) != collections.Counter(ds_labels)
or ds_features[0] != "text"
):
return (
gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
gr.update(visible=False),
gr.update(visible=True, open=True),
gr.update(interactive=(run_inference and inference_token != "")),
"",
*column_mappings,
)
return (
gr.update(value=get_styled_input(prediction_input), visible=True),
gr.update(value=prediction_response, visible=True),
gr.update(visible=True, open=False),
gr.update(interactive=(run_inference and inference_token != "")),
"",
*column_mappings,
)
def check_column_mapping_keys_validity(all_mappings):
if all_mappings is None:
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return (gr.update(interactive=True), gr.update(visible=False))
if "labels" not in all_mappings.keys():
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
return (gr.update(interactive=True), gr.update(visible=False))
def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features):
label_mapping = {}
if len(all_mappings["labels"].keys()) != len(ds_labels):
gr.Warning("Label mapping corrupted: " + CONFIRM_MAPPING_DETAILS_FAIL_RAW)
if len(all_mappings["features"].keys()) != len(ds_features):
gr.Warning("Feature mapping corrupted: " + CONFIRM_MAPPING_DETAILS_FAIL_RAW)
for i, label in zip(range(len(ds_labels)), ds_labels):
# align the saved labels with dataset labels order
label_mapping.update({str(i): all_mappings["labels"][label]})
if "features" not in all_mappings.keys():
gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
feature_mapping = all_mappings["features"]
return label_mapping, feature_mapping
def try_submit(m_id, d_id, config, split, inference, inference_token, uid):
all_mappings = read_column_mapping(uid)
check_column_mapping_keys_validity(all_mappings)
# get ds labels and features again for alignment
ds = datasets.load_dataset(d_id, config)[split]
ds_labels, ds_features = get_labels_and_features_from_dataset(ds)
label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features)
eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
save_job_to_pipe(
uid,
(
m_id,
d_id,
config,
split,
inference,
inference_token,
uid,
label_mapping,
feature_mapping,
),
eval_str,
threading.Lock(),
)
gr.Info("Your evaluation has been submitted")
return (
gr.update(interactive=False), # Submit button
gr.update(lines=5, visible=True, interactive=False),
uuid.uuid4(), # Allocate a new uuid
)