Zhengyi's picture
init
2a8a75a
raw
history blame
43.7 kB
from abc import abstractmethod
import math
import numpy as np
import torch
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from imagedream.ldm.modules.diffusionmodules.util import (
checkpoint,
conv_nd,
linear,
avg_pool_nd,
zero_module,
normalization,
timestep_embedding,
convert_module_to_f16,
convert_module_to_f32
)
from imagedream.ldm.modules.attention import (
SpatialTransformer,
SpatialTransformer3D,
exists
)
from imagedream.ldm.modules.diffusionmodules.adaptors import (
Resampler,
ImageProjModel
)
## go
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(
self,
spacial_dim: int,
embed_dim: int,
num_heads_channels: int,
output_dim: int = None,
):
super().__init__()
self.positional_embedding = nn.Parameter(
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5
)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1) # NC(HW)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
"""
A sequential module that passes timestep embeddings to the children that
support it as an extra input.
"""
def forward(self, x, emb, context=None, num_frames=1):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb)
elif isinstance(layer, SpatialTransformer3D):
x = layer(x, context, num_frames=num_frames)
elif isinstance(layer, SpatialTransformer):
x = layer(x, context)
else:
x = layer(x)
return x
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(
dims, self.channels, self.out_channels, 3, padding=padding
)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class TransposedUpsample(nn.Module):
"Learned 2x upsampling without padding"
def __init__(self, channels, out_channels=None, ks=5):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.up = nn.ConvTranspose2d(
self.channels, self.out_channels, kernel_size=ks, stride=2
)
def forward(self, x):
return self.up(x)
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims,
self.channels,
self.out_channels,
3,
stride=stride,
padding=padding,
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param use_checkpoint: if True, use gradient checkpointing on this module.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
up=False,
down=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
nn.SiLU(),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, 3, padding=1
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return checkpoint(
self._forward, (x, emb), self.parameters(), self.use_checkpoint
)
def _forward(self, x, emb):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb).type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = th.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other.
Originally ported from here, but adapted to the N-d case.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
"""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
use_checkpoint=False,
use_new_attention_order=False,
):
super().__init__()
self.channels = channels
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.use_checkpoint = use_checkpoint
self.norm = normalization(channels)
self.qkv = conv_nd(1, channels, channels * 3, 1)
if use_new_attention_order:
# split qkv before split heads
self.attention = QKVAttention(self.num_heads)
else:
# split heads before split qkv
self.attention = QKVAttentionLegacy(self.num_heads)
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
def forward(self, x):
return checkpoint(
self._forward, (x,), self.parameters(), True
) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
# return pt_checkpoint(self._forward, x) # pytorch
def _forward(self, x):
b, c, *spatial = x.shape
x = x.reshape(b, c, -1)
qkv = self.qkv(self.norm(x))
h = self.attention(qkv)
h = self.proj_out(h)
return (x + h).reshape(b, c, *spatial)
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
# We perform two matmuls with the same number of ops.
# The first computes the weight matrix, the second computes
# the combination of the value vectors.
matmul_ops = 2 * b * (num_spatial**2) * c
model.total_ops += th.DoubleTensor([matmul_ops])
class QKVAttentionLegacy(nn.Module):
"""
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts",
(q * scale).view(bs * self.n_heads, ch, length),
(k * scale).view(bs * self.n_heads, ch, length),
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class Timestep(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, t):
return timestep_embedding(t, self.dim)
class MultiViewUNetModel(nn.Module):
"""
The full multi-view UNet model with attention, timestep embedding and camera embedding.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
:param camera_dim: dimensionality of camera input.
"""
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
use_bf16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
adm_in_channels=None,
camera_dim=None,
with_ip=False, # wether add image prompt images
ip_dim=0, # number of extra token, 4 for global 16 for local
ip_weight=1.0, # weight for image prompt context
ip_mode="local_resample", # which mode of adaptor, global or local
):
super().__init__()
if use_spatial_transformer:
assert (
context_dim is not None
), "Fool!! You forgot to include the dimension of your cross-attention conditioning..."
if context_dim is not None:
assert (
use_spatial_transformer
), "Fool!! You forgot to use the spatial transformer for your cross-attention conditioning..."
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert (
num_head_channels != -1
), "Either num_heads or num_head_channels has to be set"
if num_head_channels == -1:
assert (
num_heads != -1
), "Either num_heads or num_head_channels has to be set"
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError(
"provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult"
)
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(
map(
lambda i: self.num_res_blocks[i] >= num_attention_blocks[i],
range(len(num_attention_blocks)),
)
)
print(
f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set."
)
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.dtype = th.bfloat16 if use_bf16 else self.dtype
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
self.with_ip = with_ip # wether there is image prompt
self.ip_dim = ip_dim # num of extra token, 4 for global 16 for local
self.ip_weight = ip_weight
assert ip_mode in ["global", "local_resample"]
self.ip_mode = ip_mode # which mode of adaptor
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if camera_dim is not None:
time_embed_dim = model_channels * 4
self.camera_embed = nn.Sequential(
linear(camera_dim, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
elif self.num_classes == "sequential":
assert adm_in_channels is not None
self.label_emb = nn.Sequential(
nn.Sequential(
linear(adm_in_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
)
else:
raise ValueError()
if self.with_ip and (context_dim is not None) and ip_dim > 0:
if self.ip_mode == "local_resample":
# ip-adapter-plus
hidden_dim = 1280
self.image_embed = Resampler(
dim=context_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=ip_dim, # num token
embedding_dim=hidden_dim,
output_dim=context_dim,
ff_mult=4,
)
elif self.ip_mode == "global":
self.image_embed = ImageProjModel(
cross_attention_dim=context_dim,
clip_extra_context_tokens=ip_dim)
else:
raise ValueError(f"{self.ip_mode} is not supported")
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = (
ch // num_heads
if use_spatial_transformer
else num_head_channels
)
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if (
not exists(num_attention_blocks)
or nr < num_attention_blocks[level]
):
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
)
if not use_spatial_transformer
else SpatialTransformer3D(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
disable_self_attn=disabled_sa,
use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint,
with_ip=self.with_ip,
ip_dim=self.ip_dim,
ip_weight=self.ip_weight
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
)
if not use_spatial_transformer
else SpatialTransformer3D( # always uses a self-attn
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
disable_self_attn=disable_middle_self_attn,
use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint,
with_ip=self.with_ip,
ip_dim=self.ip_dim,
ip_weight=self.ip_weight
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(self.num_res_blocks[level] + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = (
ch // num_heads
if use_spatial_transformer
else num_head_channels
)
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if (
not exists(num_attention_blocks)
or i < num_attention_blocks[level]
):
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads_upsample,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
)
if not use_spatial_transformer
else SpatialTransformer3D(
ch,
num_heads,
dim_head,
depth=transformer_depth,
context_dim=context_dim,
disable_self_attn=disabled_sa,
use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint,
with_ip=self.with_ip,
ip_dim=self.ip_dim,
ip_weight=self.ip_weight
)
)
if level and i == self.num_res_blocks[level]:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
)
if self.predict_codebook_ids:
self.id_predictor = nn.Sequential(
normalization(ch),
conv_nd(dims, model_channels, n_embed, 1),
# nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
def convert_to_fp16(self):
"""
Convert the torso of the model to float16.
"""
self.input_blocks.apply(convert_module_to_f16)
self.middle_block.apply(convert_module_to_f16)
self.output_blocks.apply(convert_module_to_f16)
def convert_to_fp32(self):
"""
Convert the torso of the model to float32.
"""
self.input_blocks.apply(convert_module_to_f32)
self.middle_block.apply(convert_module_to_f32)
self.output_blocks.apply(convert_module_to_f32)
def forward(
self,
x,
timesteps=None,
context=None,
y=None,
camera=None,
num_frames=1,
**kwargs,
):
"""
Apply the model to an input batch.
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
:param timesteps: a 1-D batch of timesteps.
:param context: a dict conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional, default None.
:param num_frames: a integer indicating number of frames for tensor reshaping.
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
"""
assert (
x.shape[0] % num_frames == 0
), "[UNet] input batch size must be dividable by num_frames!"
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # shape: torch.Size([B, 320]) mean: 0.18, std: 0.68, min: -1.00, max: 1.00
emb = self.time_embed(t_emb) # shape: torch.Size([B, 1280]) mean: 0.12, std: 0.57, min: -5.73, max: 6.51
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
# Add camera embeddings
if camera is not None:
assert camera.shape[0] == emb.shape[0]
# camera embed: shape: torch.Size([B, 1280]) mean: -0.02, std: 0.27, min: -7.23, max: 2.04
emb = emb + self.camera_embed(camera)
ip = kwargs.get("ip", None)
ip_img = kwargs.get("ip_img", None)
if ip_img is not None:
x[(num_frames-1)::num_frames, :, :, :] = ip_img
if ip is not None:
ip_emb = self.image_embed(ip) # shape: torch.Size([B, 16, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
context = torch.cat((context, ip_emb), 1) # shape: torch.Size([B, 93, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context, num_frames=num_frames)
hs.append(h)
h = self.middle_block(h, emb, context, num_frames=num_frames)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context, num_frames=num_frames)
h = h.type(x.dtype) # shape: torch.Size([10, 320, 32, 32]) mean: -0.67, std: 3.96, min: -42.74, max: 25.58
if self.predict_codebook_ids: # False
return self.id_predictor(h)
else:
return self.out(h) # shape: torch.Size([10, 4, 32, 32]) mean: -0.00, std: 0.91, min: -3.65, max: 3.93
class MultiViewUNetModelStage2(MultiViewUNetModel):
"""
The full multi-view UNet model with attention, timestep embedding and camera embedding.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
:param camera_dim: dimensionality of camera input.
"""
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
use_bf16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
adm_in_channels=None,
camera_dim=None,
with_ip=False, # wether add image prompt images
ip_dim=0, # number of extra token, 4 for global 16 for local
ip_weight=1.0, # weight for image prompt context
ip_mode="local_resample", # which mode of adaptor, global or local
):
super().__init__(
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout,
channel_mult,
conv_resample,
dims,
num_classes,
use_checkpoint,
use_fp16,
use_bf16,
num_heads,
num_head_channels,
num_heads_upsample,
use_scale_shift_norm,
resblock_updown,
use_new_attention_order,
use_spatial_transformer,
transformer_depth,
context_dim,
n_embed,
legacy,
disable_self_attentions,
num_attention_blocks,
disable_middle_self_attn,
use_linear_in_transformer,
adm_in_channels,
camera_dim,
with_ip,
ip_dim,
ip_weight,
ip_mode,
)
def forward(
self,
x,
timesteps=None,
context=None,
y=None,
camera=None,
num_frames=1,
**kwargs,
):
"""
Apply the model to an input batch.
:param x: an [(N x F) x C x ...] Tensor of inputs. F is the number of frames (views).
:param timesteps: a 1-D batch of timesteps.
:param context: a dict conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional, default None.
:param num_frames: a integer indicating number of frames for tensor reshaping.
:return: an [(N x F) x C x ...] Tensor of outputs. F is the number of frames (views).
"""
assert (
x.shape[0] % num_frames == 0
), "[UNet] input batch size must be dividable by num_frames!"
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) # shape: torch.Size([B, 320]) mean: 0.18, std: 0.68, min: -1.00, max: 1.00
emb = self.time_embed(t_emb) # shape: torch.Size([B, 1280]) mean: 0.12, std: 0.57, min: -5.73, max: 6.51
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
# Add camera embeddings
if camera is not None:
assert camera.shape[0] == emb.shape[0]
# camera embed: shape: torch.Size([B, 1280]) mean: -0.02, std: 0.27, min: -7.23, max: 2.04
emb = emb + self.camera_embed(camera)
ip = kwargs.get("ip", None)
ip_img = kwargs.get("ip_img", None)
pixel_images = kwargs.get("pixel_images", None)
if ip_img is not None:
x[(num_frames-1)::num_frames, :, :, :] = ip_img
x = torch.cat((x, pixel_images), dim=1)
if ip is not None:
ip_emb = self.image_embed(ip) # shape: torch.Size([B, 16, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
context = torch.cat((context, ip_emb), 1) # shape: torch.Size([B, 93, 1024]) mean: -0.00, std: 1.00, min: -11.65, max: 7.31
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context, num_frames=num_frames)
hs.append(h)
h = self.middle_block(h, emb, context, num_frames=num_frames)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context, num_frames=num_frames)
h = h.type(x.dtype) # shape: torch.Size([10, 320, 32, 32]) mean: -0.67, std: 3.96, min: -42.74, max: 25.58
if self.predict_codebook_ids: # False
return self.id_predictor(h)
else:
return self.out(h) # shape: torch.Size([10, 4, 32, 32]) mean: -0.00, std: 0.91, min: -3.65, max: 3.93