import numpy as np import torch import time import nvdiffrast.torch as dr from util.utils import get_tri import tempfile from mesh import Mesh import zipfile from util.renderer import Renderer def generate3d(model, rgb, ccm, device): model.renderer = Renderer(tet_grid_size=model.tet_grid_size, camera_angle_num=model.camera_angle_num, scale=model.input.scale, geo_type = model.geo_type) color_tri = torch.from_numpy(rgb)/255 xyz_tri = torch.from_numpy(ccm[:,:,(2,1,0)])/255 color = color_tri.permute(2,0,1) xyz = xyz_tri.permute(2,0,1) def get_imgs(color): # color : [C, H, W*6] color_list = [] color_list.append(color[:,:,256*5:256*(1+5)]) for i in range(0,5): color_list.append(color[:,:,256*i:256*(1+i)]) return torch.stack(color_list, dim=0)# [6, C, H, W] triplane_color = get_imgs(color).permute(0,2,3,1).unsqueeze(0).to(device)# [1, 6, H, W, C] color = get_imgs(color) xyz = get_imgs(xyz) color = get_tri(color, dim=0, blender= True, scale = 1).unsqueeze(0) xyz = get_tri(xyz, dim=0, blender= True, scale = 1, fix= True).unsqueeze(0) triplane = torch.cat([color,xyz],dim=1).to(device) # 3D visualize model.eval() if model.denoising == True: tnew = 20 tnew = torch.randint(tnew, tnew+1, [triplane.shape[0]], dtype=torch.long, device=triplane.device) noise_new = torch.randn_like(triplane) *0.5+0.5 triplane = model.scheduler.add_noise(triplane, noise_new, tnew) start_time = time.time() with torch.no_grad(): triplane_feature2 = model.unet2(triplane,tnew) end_time = time.time() elapsed_time = end_time - start_time print(f"unet takes {elapsed_time}s") else: triplane_feature2 = model.unet2(triplane) with torch.no_grad(): data_config = { 'resolution': [1024, 1024], "triview_color": triplane_color.to(device), } verts, faces = model.decode(data_config, triplane_feature2) data_config['verts'] = verts[0] data_config['faces'] = faces from kiui.mesh_utils import clean_mesh verts, faces = clean_mesh(data_config['verts'].squeeze().cpu().numpy().astype(np.float32), data_config['faces'].squeeze().cpu().numpy().astype(np.int32), repair = False, remesh=True, remesh_size=0.005, remesh_iters=1) data_config['verts'] = torch.from_numpy(verts).cuda().contiguous() data_config['faces'] = torch.from_numpy(faces).cuda().contiguous() start_time = time.time() with torch.no_grad(): mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name model.export_mesh(data_config, mesh_path_glb, tri_fea_2 = triplane_feature2) # glctx = dr.RasterizeGLContext()#dr.RasterizeCudaContext() # mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name # model.export_mesh_wt_uv(glctx, data_config, mesh_path_obj, "", device, res=(1024,1024), tri_fea_2=triplane_feature2) # mesh = Mesh.load(mesh_path_obj+".obj", bound=0.9, front_dir="+z") # mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name # mesh.write(mesh_path_glb+".glb") # # mesh_obj2 = trimesh.load(mesh_path_glb+".glb", file_type='glb') # # mesh_path_obj2 = tempfile.NamedTemporaryFile(suffix=f"", delete=False).name # # mesh_obj2.export(mesh_path_obj2+".obj") # with zipfile.ZipFile(mesh_path_obj+'.zip', 'w') as myzip: # myzip.write(mesh_path_obj+'.obj', mesh_path_obj.split("/")[-1]+'.obj') # myzip.write(mesh_path_obj+'.png', mesh_path_obj.split("/")[-1]+'.png') # myzip.write(mesh_path_obj+'.mtl', mesh_path_obj.split("/")[-1]+'.mtl') end_time = time.time() elapsed_time = end_time - start_time print(f"uv takes {elapsed_time}s") return mesh_path_glb+".obj"