Spaces:
Runtime error
Runtime error
File size: 11,076 Bytes
8e3f751 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import click
import json
import logging
import numpy as np
import os
import pprint
import random
import re
import torch
import string
import sys
import torch
import wandb
import warnings
warnings.filterwarnings("ignore")
from collections import defaultdict
from datetime import datetime
from time import time
from tqdm import tqdm
from accelerate import infer_auto_device_map, init_empty_weights, Accelerator
from sklearn.metrics import accuracy_score, f1_score
from torch.profiler import profile, record_function, ProfilerActivity
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from config import *
from src.processing.generate import (
format_instance,
get_sentences,
generate_prefix,
generate_instructions,
generate_demonstrations,
generate_prediction,
)
from src.processing.extractions import extract_all_tagged_phrases, extract_prediction
from src.eval.metrics import classify_predictions, compute_metrics
from src.utils.utils import (
load_model_and_tokenizer,
save_results,
set_env_vars,
load_sweep_config,
save_best_config,
)
@click.command()
@click.option(
"--kind",
default=DEFAULT_KIND,
help="Specify the kind of prompt input: json (default) or readable",
)
@click.option(
"--runtype",
type=click.Choice(["new", "eval"], case_sensitive=False),
default="eval",
help="Specify the type of run: new or eval (default)",
)
@click.option(
"--data",
default=None,
help="Specify the directory of the data if running on new data",
)
@click.option(
"--sweep",
is_flag=True,
help="Run sweeps",
)
@click.option(
"--sweep_config",
default="sweep_config.json",
help="Sweep configuration file",
)
@click.option(
"--load_best_config",
default=None,
help="Load the best configuration from a file",
)
def main(kind, runtype, data, sweep, sweep_config, load_best_config):
# set up wandb
run = wandb.init(project="kg-runs")
config = wandb.config
run_flag = "run"
if sweep:
if runtype != "eval":
raise ValueError("Sweeps can only be run in eval mode")
run_flag = "sweep"
kind = config.kind
temperature = config.temperature
top_p = config.top_p
few_shot_num = config.few_shot_num
few_shot_selection = config.few_shot_selection
# few_shot_type = config.few_shot_type
elif load_best_config:
with open(load_best_config, "r") as f:
best_config = json.load(f)
kind = best_config["kind"]
temperature = best_config["temperature"]
top_p = best_config["top_p"]
few_shot_num = best_config["few_shot_num"]
few_shot_selection = best_config["few_shot_selection"]
else:
temperature = DEFAULT_TEMPERATURE
top_p = DEFAULT_TOP_P
few_shot_num = DEFAULT_FEW_SHOT_NUM
few_shot_selection = DEFAULT_FEW_SHOT_SELECTION
config.update(
{
"kind": kind,
"temperature": temperature,
"top_p": top_p,
"few_shot_num": few_shot_num,
"few_shot_selection": few_shot_selection,
}
)
wandb.config.update(config)
wandb.run.name = f"{run_flag}_{kind}_t{temperature:.2f}_p{top_p:.2f}_fs{few_shot_num}_{few_shot_selection}"
logger = logging.getLogger(__name__)
# set up logging and save directories
uuid = "".join(
random.choice(string.ascii_letters + string.digits) for _ in range(8)
)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
out_dir_path = f"{runtype}_{few_shot_selection}_{kind}_{uuid}_{timestamp}"
os.makedirs(os.path.join(DEFAULT_RES_DIR, out_dir_path), exist_ok=True)
os.makedirs(
os.path.join(DEFAULT_RES_DIR, out_dir_path, DEFAULT_LOG_DIR), exist_ok=True
)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.FileHandler(
os.path.join(DEFAULT_RES_DIR, out_dir_path, DEFAULT_LOG_DIR, f"log.txt")
),
logging.StreamHandler(),
],
)
# set random seeds and environment variables
logging.info("setting random seeds and environment variables...")
random.seed(0)
np.random.seed(1)
torch.manual_seed(2)
if torch.cuda.is_available():
logging.info(
"Using {} {} GPUs".format(
torch.cuda.device_count(), torch.cuda.get_device_name()
)
)
torch.cuda.empty_cache()
torch.cuda.manual_seed_all(3)
torch.backends.cudnn.deterministic = True
set_env_vars()
# load the schema
logging.info("loading schema and data...")
with open("data/manual/schema.json", "r") as f:
schema = json.load(f)
# load the data
examples = []
with open("data/manual/human_annotations.jsonl", "r") as f:
for line in f:
examples.append(json.loads(line))
train = examples[:3]
valid = []
if runtype == "new":
seen = set()
for file in os.listdir(data):
with open(os.path.join(data, file), "r") as f:
for line in f:
dict_line = json.loads(line)
if dict_line["title"] not in seen:
seen.add(dict_line["title"])
valid.append(dict_line)
else:
logging.info(f"Duplicate found in {file}:\n{dict_line}\n\n")
else:
valid = examples[3:]
logging.info(f"Number of training examples: {len(train)}")
logging.info(f"Number of validation examples: {len(valid)}")
# load model and tokenizer
logging.info("loading model and tokenizer...")
model_id = DEFAULT_MODEL_ID
model, tokenizer = load_model_and_tokenizer(model_id)
# generate the prefix
logging.info("generating base prompt...")
prefix = generate_prefix(
instructions=generate_instructions(schema, kind),
demonstrations=generate_demonstrations(
train, kind, num_examples=few_shot_num, selection=few_shot_selection
),
)
# run/evaluate the model
logging.info("running the model...")
logging.info(f"Run type: {runtype}")
logging.info(f"Data: {data}")
logging.info(f"Model: {model_id}")
logging.info(
f"Run parameters: kind={kind}, temperature={temperature}, top_p={top_p}, few_shot_num={few_shot_num}, few_shot_selection={few_shot_selection}"
)
if runtype == "eval":
n_tp = 0
n_fp = 0
n_fn = 0
n_tp_union = 0
n_fp_union = 0
n_fn_union = 0
running_time = 0
pred_times = []
all_inputs = []
predicted_responses = []
gold_tags = []
predicted_tags = []
for i, example in enumerate(tqdm(valid)):
logging.info(f"#" * 50)
abstract = example["title"] + ". " + example["abstract"]
sentences = get_sentences(abstract)
if runtype == "eval":
tagged_abstract = (
example["tagged_title"] + ". " + example["tagged_abstract"]
)
tagged_sentences = get_sentences(tagged_abstract)
zipped = zip(sentences, tagged_sentences, strict=True)
else:
zipped = zip(sentences, [None for _ in sentences], strict=True)
for sentence, tagged_sentence in tqdm(zipped):
input = format_instance(sentence, extraction=None)
s_time = time()
predicted_response = generate_prediction(
model,
tokenizer,
prefix,
input,
kind,
temperature=temperature,
top_p=top_p,
)
e_time = time()
pred = extract_prediction(schema, predicted_response, kind=kind)
if runtype == "eval":
gold = extract_all_tagged_phrases(tagged_sentence)
tp, fp, fn = classify_predictions(gold, pred)
n_tp += tp
n_fp += fp
n_fn += fn
utp, ufp, ufn = classify_predictions(gold, pred, union=True)
n_tp_union += utp
n_fp_union += ufp
n_fn_union += ufn
else:
gold = None
running_time += time() - s_time
pred_times.append(e_time - s_time)
all_inputs.append(prefix + input)
gold_tags.append(gold)
predicted_responses.append(predicted_response)
predicted_tags.append(pred)
logging.info(f"Prompt:\n{prefix + input}\n")
logging.info(f"True Tag:\n{gold}\n")
logging.info(f"Predicted Response:\n{predicted_response}\n")
logging.info(f"Predicted Tag:\n{pred}\n")
if (i + 1) % DEFAULT_SAVE_INTERVAL == 0:
if runtype == "eval":
metrics = compute_metrics(
running_time,
pred_times,
runtype,
eval_metrics=(n_tp, n_fp, n_fn, n_tp_union, n_fp_union, n_fn_union),
)
wandb.log(metrics)
else:
metrics = compute_metrics(running_time, pred_times, runtype)
save_results(
out_dir_path,
all_inputs,
gold_tags,
predicted_responses,
predicted_tags,
metrics,
runtype,
)
if i == len(valid) - 1:
if runtype == "eval":
metrics = compute_metrics(
running_time,
pred_times,
runtype,
eval_metrics=(n_tp, n_fp, n_fn, n_tp_union, n_fp_union, n_fn_union),
)
else:
metrics = compute_metrics(running_time, pred_times, runtype)
save_results(
out_dir_path,
all_inputs,
gold_tags,
predicted_responses,
predicted_tags,
metrics,
runtype,
append=True,
)
all_inputs.clear()
gold_tags.clear()
predicted_responses.clear()
predicted_tags.clear()
pprint.pprint(metrics)
if runtype == "eval" and sweep:
wandb.log(
{
"prediction_time": e_time - s_time,
"true_positives": tp,
"false_positives": fp,
"false_negatives": fn,
"union_true_positives": utp,
"union_false_positives": ufp,
"union_false_negatives": ufn,
}
)
save_best_config(metrics, config)
logger.info(f"Results saved in: {os.path.join(DEFAULT_RES_DIR, out_dir_path)}")
if __name__ == "__main__":
if "--sweep" in sys.argv:
sweep_config = load_sweep_config()
wandb.agent(wandb.sweep(sweep_config, project="kg-runs"), function=main)
else:
main()
|