#!/bin/bash #SBATCH --partition=gpu #SBATCH --constraint=icelake,ib #SBATCH --nodes=1 #SBATCH --ntasks-per-node=2 #SBATCH --cpus-per-task=32 #SBATCH --gpus=2 #SBATCH -C a100-80gb&ib-a100 #SBATCH --mem=512G #SBATCH --time=3-00:00:00 #SBATCH --output=slurm_logs/%x-%j.out #SBATCH --error=slurm_logs/%x-%j.err #SBATCH --job-name=kg-for-science module --force purge module load modules/2.2-20230808 modules/2.3-20240529 module load gcc/10.3.0 cuda/12.1.1 python/3.11.7 echo "$(nvidia-smi --query-gpu=gpu_name --format=csv,noheader | sort | uniq -c | awk -v hostname="$(hostname)" \ '{print "Running on " hostname " with", $1, $2, $3, $4, "GPUs."}')" cd /mnt/home/adas1/projects/knowledge-graph/kg-for-science conda init conda activate kg4s python main.py --runtype new --data data/the_well --kind readable