Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
from fastai.vision.all import *
|
3 |
-
import librosa
|
4 |
import numpy as np
|
5 |
import matplotlib.pyplot as plt
|
6 |
-
from pydub import AudioSegment
|
7 |
import tempfile
|
|
|
|
|
8 |
|
|
|
9 |
learn = load_learner('model.pkl')
|
10 |
labels = learn.dls.vocab
|
11 |
|
12 |
-
|
13 |
def record_audio(duration=3, sr=44100, channels=1):
|
14 |
print("Recording...")
|
15 |
audio = sd.rec(int(duration * sr), samplerate=sr, channels=channels, dtype='float32')
|
16 |
sd.wait()
|
17 |
print("Recording stopped.")
|
18 |
return audio, sr
|
19 |
-
|
20 |
-
def audio_to_spectrogram(audio_file,):
|
21 |
-
if audio_file.endswith('.mp3'):
|
22 |
-
with tempfile.NamedTemporaryFile(suffix='.wav') as temp_wav:
|
23 |
-
audio = AudioSegment.from_mp3(audio_file)
|
24 |
-
audio.export(temp_wav.name, format='wav')
|
25 |
-
y, sr = librosa.load(temp_wav.name, sr=None)
|
26 |
-
else:
|
27 |
-
y, sr = librosa.load(audio_file, sr=None)
|
28 |
|
29 |
-
|
|
|
30 |
S_dB = librosa.power_to_db(S, ref=np.max)
|
31 |
fig, ax = plt.subplots()
|
32 |
img = librosa.display.specshow(S_dB, x_axis='time', y_axis='mel', sr=sr, fmax=8000, ax=ax)
|
@@ -38,17 +30,18 @@ def audio_to_spectrogram(audio_file,):
|
|
38 |
return spectrogram_file
|
39 |
|
40 |
def predict(audio):
|
41 |
-
|
|
|
42 |
img = PILImage.create(spectrogram_file)
|
43 |
img = img.resize((512, 512))
|
44 |
pred, pred_idx, probs = learn.predict(img)
|
45 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
46 |
|
47 |
-
|
48 |
-
|
49 |
gr.Interface(
|
50 |
fn=predict,
|
51 |
-
inputs=gr.Audio(sources="microphone", type="
|
52 |
outputs=gr.components.Label(num_top_classes=3),
|
53 |
examples=examples,
|
54 |
-
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
from fastai.vision.all import *
|
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
|
|
5 |
import tempfile
|
6 |
+
import sounddevice as sd
|
7 |
+
import soundfile as sf
|
8 |
|
9 |
+
# Load your trained model and define labels
|
10 |
learn = load_learner('model.pkl')
|
11 |
labels = learn.dls.vocab
|
12 |
|
|
|
13 |
def record_audio(duration=3, sr=44100, channels=1):
|
14 |
print("Recording...")
|
15 |
audio = sd.rec(int(duration * sr), samplerate=sr, channels=channels, dtype='float32')
|
16 |
sd.wait()
|
17 |
print("Recording stopped.")
|
18 |
return audio, sr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
def audio_to_spectrogram(audio, sr):
|
21 |
+
S = librosa.feature.melspectrogram(y=audio[:, 0], sr=sr, n_mels=128, fmax=8000)
|
22 |
S_dB = librosa.power_to_db(S, ref=np.max)
|
23 |
fig, ax = plt.subplots()
|
24 |
img = librosa.display.specshow(S_dB, x_axis='time', y_axis='mel', sr=sr, fmax=8000, ax=ax)
|
|
|
30 |
return spectrogram_file
|
31 |
|
32 |
def predict(audio):
|
33 |
+
audio_data, sr = sf.read(audio)
|
34 |
+
spectrogram_file = audio_to_spectrogram(audio_data, sr)
|
35 |
img = PILImage.create(spectrogram_file)
|
36 |
img = img.resize((512, 512))
|
37 |
pred, pred_idx, probs = learn.predict(img)
|
38 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
39 |
|
40 |
+
# Launch the interface
|
41 |
+
examples = [['example_audio.mp3']]
|
42 |
gr.Interface(
|
43 |
fn=predict,
|
44 |
+
inputs=gr.Audio(sources="microphone", type="file", label="Record audio (WAV)"),
|
45 |
outputs=gr.components.Label(num_top_classes=3),
|
46 |
examples=examples,
|
47 |
+
).launch()
|