!pip install sounddevice import gradio as gr from fastai.vision.all import * import numpy as np import matplotlib.pyplot as plt import tempfile import sounddevice as sd import soundfile as sf # Load your trained model and define labels learn = load_learner('model.pkl') labels = learn.dls.vocab def record_audio(duration=3, sr=44100, channels=1): print("Recording...") audio = sd.rec(int(duration * sr), samplerate=sr, channels=channels, dtype='float32') sd.wait() print("Recording stopped.") return audio, sr def audio_to_spectrogram(audio, sr): S = librosa.feature.melspectrogram(y=audio[:, 0], sr=sr, n_mels=128, fmax=8000) S_dB = librosa.power_to_db(S, ref=np.max) fig, ax = plt.subplots() img = librosa.display.specshow(S_dB, x_axis='time', y_axis='mel', sr=sr, fmax=8000, ax=ax) fig.colorbar(img, ax=ax, format='%+2.0f dB') ax.set(title='Mel-frequency spectrogram') spectrogram_file = "spectrogram.png" plt.savefig(spectrogram_file) plt.close() return spectrogram_file def predict(audio): audio_data, sr = sf.read(audio) spectrogram_file = audio_to_spectrogram(audio_data, sr) img = PILImage.create(spectrogram_file) img = img.resize((512, 512)) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Launch the interface examples = [['example_audio.mp3']] gr.Interface( fn=predict, inputs=gr.Audio(sources="microphone", type="file", label="Record audio (WAV)"), outputs=gr.components.Label(num_top_classes=3), examples=examples, ).launch()