Spaces:
Runtime error
Runtime error
abhirajeshbhai
commited on
Commit
•
9205986
1
Parent(s):
46918b5
implement unet and deplot
Browse files- app.py +30 -0
- banana_colorizer_unet.pth +3 -0
- model.py +103 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
from model import model, image_transforms
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def col_select(value):
|
12 |
+
print(value)
|
13 |
+
|
14 |
+
|
15 |
+
st.title("Banan Image Colorizer")
|
16 |
+
|
17 |
+
upload_file = st.file_uploader("Upload Image")
|
18 |
+
|
19 |
+
if upload_file:
|
20 |
+
image = upload_file
|
21 |
+
image = Image.open(image)
|
22 |
+
image_gs = image_transforms(image)
|
23 |
+
image_gs_prev = image_gs.permute(1, 2, 0).detach().cpu().numpy()
|
24 |
+
|
25 |
+
image_color = model(image_gs.unsqueeze(0)).squeeze().permute(1, 2, 0).detach().cpu().numpy()
|
26 |
+
|
27 |
+
|
28 |
+
col1, col2 = st.columns(2)
|
29 |
+
col1.image(image_gs_prev)
|
30 |
+
col2.image(image_color, clamp=True, channels='RGB')
|
banana_colorizer_unet.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97d8406c9bae3c4ccda6962d483d23e1e649e46a8bbe25e1e2bef95e5abc13b3
|
3 |
+
size 124265610
|
model.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision
|
4 |
+
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
|
12 |
+
image_transforms = torchvision.transforms.Compose([
|
13 |
+
torchvision.transforms.Resize((256, 256)),
|
14 |
+
torchvision.transforms.Grayscale(),
|
15 |
+
torchvision.transforms.ToTensor(),
|
16 |
+
torchvision.transforms.Normalize(mean=[0.0], std=[1.0])
|
17 |
+
])
|
18 |
+
|
19 |
+
class ConvBlock(nn.Module):
|
20 |
+
def __init__(self, in_channel, out_channel):
|
21 |
+
super(ConvBlock, self).__init__()
|
22 |
+
self.main = nn.Sequential(
|
23 |
+
nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1),
|
24 |
+
nn.BatchNorm2d(out_channel),
|
25 |
+
nn.ReLU(True),
|
26 |
+
nn.Conv2d(out_channel, out_channel, kernel_size=3, stride=1, padding=1),
|
27 |
+
nn.BatchNorm2d(out_channel),
|
28 |
+
nn.ReLU(True)
|
29 |
+
)
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
return self.main(x)
|
33 |
+
|
34 |
+
class UNETFruitColor(nn.Module):
|
35 |
+
def __init__(self):
|
36 |
+
super(UNETFruitColor, self).__init__()
|
37 |
+
|
38 |
+
self.convs = [64, 128, 256, 512]
|
39 |
+
self.convEncoder = nn.ModuleList()
|
40 |
+
|
41 |
+
in_feature = 1
|
42 |
+
for conv in self.convs:
|
43 |
+
self.convEncoder.append(ConvBlock(in_feature, conv))
|
44 |
+
in_feature = conv
|
45 |
+
|
46 |
+
self.bottleNeck = ConvBlock(self.convs[-1], self.convs[-1]*2)
|
47 |
+
|
48 |
+
in_feature = self.convs[-1]*2
|
49 |
+
|
50 |
+
self.convDecoder = nn.ModuleList()
|
51 |
+
self.decoderUpConvs = nn.ModuleList()
|
52 |
+
|
53 |
+
for conv in self.convs[::-1]:
|
54 |
+
self.convDecoder.append(ConvBlock(in_feature, conv))
|
55 |
+
self.decoderUpConvs.append(nn.ConvTranspose2d(in_feature, conv, kernel_size=2, stride=2, padding=0))
|
56 |
+
in_feature = conv
|
57 |
+
|
58 |
+
|
59 |
+
# final conv and deconv
|
60 |
+
self.finalUpConv = nn.Conv2d(in_feature, 3, (1, 1))
|
61 |
+
self.sigmoid = nn.Sigmoid()
|
62 |
+
|
63 |
+
def forward(self,x):
|
64 |
+
skip_conns = []
|
65 |
+
for conv in self.convEncoder:
|
66 |
+
# conv
|
67 |
+
x = conv(x)
|
68 |
+
# append for skip conns
|
69 |
+
skip_conns.append(x)
|
70 |
+
# max pool
|
71 |
+
x = F.max_pool2d(x, (2,2), stride=2)
|
72 |
+
|
73 |
+
x = self.bottleNeck(x)
|
74 |
+
|
75 |
+
skip_conns = skip_conns[::-1]
|
76 |
+
|
77 |
+
for idx in range(len(self.convDecoder)):
|
78 |
+
# do upsample here
|
79 |
+
upconv = self.decoderUpConvs[idx]
|
80 |
+
deconv = self.convDecoder[idx]
|
81 |
+
skp = skip_conns[idx]
|
82 |
+
|
83 |
+
# do up conv
|
84 |
+
x = upconv(x)
|
85 |
+
|
86 |
+
# crop and cat
|
87 |
+
x_cat = torchvision.transforms.Resize((x.shape[2], x.shape[3]))(skp)
|
88 |
+
x = torch.cat([x_cat, x], dim=1)
|
89 |
+
|
90 |
+
# do deconv
|
91 |
+
x = deconv(x)
|
92 |
+
|
93 |
+
# final
|
94 |
+
|
95 |
+
x = self.finalUpConv(x)
|
96 |
+
# x = self.sigmoid(x)
|
97 |
+
return x
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
model = UNETFruitColor()
|
102 |
+
model.load_state_dict(torch.load("banana_colorizer_unet.pth", map_location=device),strict=True)
|
103 |
+
model.eval()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
streamlit
|