File size: 1,497 Bytes
4614c9a
 
 
25e6579
 
 
 
 
 
 
 
 
 
 
 
 
4920445
 
4614c9a
 
25e6579
 
 
 
3097ce9
4920445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da08ab
4920445
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
<!DOCTYPE html>
<html>
	<head>
      <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto&display=swap" >
      <style>
          body {
              font-family: 'Roboto', sans-serif;
              font-size: 16px; 
          }
        .logo {
            height: 1em;
            vertical-align: middle;
            margin-bottom: 0.1em; 
          }
      </style>
      
		<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite@0.4.1/dist/lite.js"></script>
		<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite@0.4.1/dist/lite.css" />
	</head>
	<body>
      <h2>
        <img src="lite-logo.png" alt="logo" class="logo">
        Gradio-lite (Gradio running entirely in your browser!)
      </h2>
      <p>Try it out! Once the Gradio app loads (can take 10-15 seconds), disconnect your Wifi and the machine learning model will still work!</p>
<gradio-lite>

<gradio-requirements>
transformers_js_py
</gradio-requirements>

<gradio-file name="app.py" entrypoint>
from transformers_js import import_transformers_js
import gradio as gr

transformers = await import_transformers_js()
pipeline = transformers.pipeline
pipe = await pipeline('sentiment-analysis')

async def classify(text):
	return await pipe(text)

demo = gr.Interface(classify, "textbox", "json", examples=["It's a happy day in the neighborhood", "I'm an evil penguin", "It wasn't a bad film."])
demo.launch()
</gradio-file>

</gradio-lite>		
    </body>
</html>