Spaces:
Running
Running
File size: 1,618 Bytes
4614c9a 2ffae77 ad911ae 53174b4 8b54486 2ffae77 4920445 4614c9a 8186b7e ad911ae 8186b7e 3097ce9 4920445 c52f02e 4920445 b1ae291 aa0c481 4920445 c5da146 4920445 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
<!DOCTYPE html>
<html>
<head>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto&display=swap" >
<style>
body {
font-family: 'Roboto', sans-serif;
font-size: 16px;
}
.logo {
height: 1em;
vertical-align: middle;
margin-bottom: 0.1em;
}
</style>
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite@0.4.1/dist/lite.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite@0.4.1/dist/lite.css" />
</head>
<body>
<h2>
<img src="lite-logo.png" alt="logo" class="logo">
Gradio-lite (Gradio running entirely in your browser!)
</h2>
<p>Try it out! Once the Gradio app loads (can take 10-15 seconds), disconnect your Wifi and the machine learning model will still work!</p>
<gradio-lite>
<gradio-requirements>
transformers_js_py
</gradio-requirements>
<gradio-file name="app.py" entrypoint>
from transformers_js import import_transformers_js
import gradio as gr
transformers = await import_transformers_js()
pipeline = transformers.pipeline
pipe = await pipeline('zero-shot-image-classification')
async def classify(image, classes):
data = await pipe(image, classes.split(","))
result = [{item['label']: round(item['score'], 2) for item in data}]
return result
demo = gr.Interface(classify, [gr.Image(label="Input image", type="filepath"), gr.Textbox(label="Classes separated by commas")], gr.Label())
demo.launch()
</gradio-file>
</gradio-lite>
</body>
</html> |