Muennighoff commited on
Commit
6af949b
β€’
1 Parent(s): bf18e02
Files changed (1) hide show
  1. app.py +9 -2
app.py CHANGED
@@ -195,6 +195,8 @@ def add_task(examples):
195
 
196
  for model in EXTERNAL_MODELS:
197
  ds = load_dataset("mteb/results", model)
 
 
198
  ds = ds.map(add_lang)
199
  ds = ds.map(add_task)
200
  base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))}
@@ -205,7 +207,7 @@ for model in EXTERNAL_MODELS:
205
  EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
206
 
207
 
208
- def get_mteb_data(tasks=["Clustering"], langs=[], task_to_metric=TASK_TO_METRIC):
209
  api = HfApi()
210
  models = api.list_models(filter="mteb")
211
  # Initialize list to models that we cannot fetch metadata from
@@ -253,7 +255,8 @@ def get_mteb_data(tasks=["Clustering"], langs=[], task_to_metric=TASK_TO_METRIC)
253
  cols = sorted(list(df.columns))
254
  cols.insert(0, cols.pop(cols.index("Model")))
255
  df = df[cols]
256
- df.fillna("", inplace=True)
 
257
  return df
258
 
259
  def get_mteb_average():
@@ -269,6 +272,7 @@ def get_mteb_average():
269
  "Summarization",
270
  ],
271
  langs=["en", "en-en"],
 
272
  )
273
  # Approximation (Missing Bitext Mining & including some nans)
274
  NUM_SCORES = DATA_OVERALL.shape[0] * DATA_OVERALL.shape[1]
@@ -290,6 +294,9 @@ def get_mteb_average():
290
 
291
  DATA_OVERALL = DATA_OVERALL.round(2)
292
 
 
 
 
293
  DATA_CLASSIFICATION_EN = DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION]
294
  DATA_CLUSTERING = DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING]
295
  DATA_PAIR_CLASSIFICATION = DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION]
 
195
 
196
  for model in EXTERNAL_MODELS:
197
  ds = load_dataset("mteb/results", model)
198
+ # For local debugging:
199
+ #, download_mode='force_redownload', ignore_verifications=True)
200
  ds = ds.map(add_lang)
201
  ds = ds.map(add_task)
202
  base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))}
 
207
  EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
208
 
209
 
210
+ def get_mteb_data(tasks=["Clustering"], langs=[], fillna=True, task_to_metric=TASK_TO_METRIC):
211
  api = HfApi()
212
  models = api.list_models(filter="mteb")
213
  # Initialize list to models that we cannot fetch metadata from
 
255
  cols = sorted(list(df.columns))
256
  cols.insert(0, cols.pop(cols.index("Model")))
257
  df = df[cols]
258
+ if fillna:
259
+ df.fillna("", inplace=True)
260
  return df
261
 
262
  def get_mteb_average():
 
272
  "Summarization",
273
  ],
274
  langs=["en", "en-en"],
275
+ fillna=False
276
  )
277
  # Approximation (Missing Bitext Mining & including some nans)
278
  NUM_SCORES = DATA_OVERALL.shape[0] * DATA_OVERALL.shape[1]
 
294
 
295
  DATA_OVERALL = DATA_OVERALL.round(2)
296
 
297
+ # Fill NaN after averaging
298
+ DATA_OVERALL.fillna("", inplace=True)
299
+
300
  DATA_CLASSIFICATION_EN = DATA_OVERALL[["Model"] + TASK_LIST_CLASSIFICATION]
301
  DATA_CLUSTERING = DATA_OVERALL[["Model"] + TASK_LIST_CLUSTERING]
302
  DATA_PAIR_CLASSIFICATION = DATA_OVERALL[["Model"] + TASK_LIST_PAIR_CLASSIFICATION]