Spaces:
Running
Running
abrar-adnan
commited on
Commit
•
8ced839
1
Parent(s):
197af76
added emotion analysis
Browse files- app.py +9 -1
- optimized.py +97 -0
app.py
CHANGED
@@ -8,7 +8,7 @@ import base64
|
|
8 |
from deepface import DeepFace
|
9 |
import torchaudio
|
10 |
import moviepy.editor as mp
|
11 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
12 |
|
13 |
# import pathlib
|
14 |
# temp = pathlib.PosixPath
|
@@ -23,6 +23,8 @@ backends = [
|
|
23 |
'mediapipe'
|
24 |
]
|
25 |
|
|
|
|
|
26 |
def getTranscription(path):
|
27 |
# Insert Local Video File Path
|
28 |
clip = mp.VideoFileClip(path)
|
@@ -51,6 +53,10 @@ def getTranscription(path):
|
|
51 |
|
52 |
model = load_learner("gaze-recognizer-v3.pkl")
|
53 |
|
|
|
|
|
|
|
|
|
54 |
def video_processing(video_file, encoded_video):
|
55 |
angry = 0
|
56 |
disgust = 0
|
@@ -74,6 +80,8 @@ def video_processing(video_file, encoded_video):
|
|
74 |
|
75 |
transcription = getTranscription(video_file)
|
76 |
print(transcription)
|
|
|
|
|
77 |
|
78 |
video_capture = cv2.VideoCapture(video_file)
|
79 |
on_camera = 0
|
|
|
8 |
from deepface import DeepFace
|
9 |
import torchaudio
|
10 |
import moviepy.editor as mp
|
11 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline
|
12 |
|
13 |
# import pathlib
|
14 |
# temp = pathlib.PosixPath
|
|
|
23 |
'mediapipe'
|
24 |
]
|
25 |
|
26 |
+
emotion_pipeline = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion")
|
27 |
+
|
28 |
def getTranscription(path):
|
29 |
# Insert Local Video File Path
|
30 |
clip = mp.VideoFileClip(path)
|
|
|
53 |
|
54 |
model = load_learner("gaze-recognizer-v3.pkl")
|
55 |
|
56 |
+
def analyze_emotion(text):
|
57 |
+
result = emotion_pipeline(text)
|
58 |
+
return result
|
59 |
+
|
60 |
def video_processing(video_file, encoded_video):
|
61 |
angry = 0
|
62 |
disgust = 0
|
|
|
80 |
|
81 |
transcription = getTranscription(video_file)
|
82 |
print(transcription)
|
83 |
+
text_emotion = analyze_emotion(transcription)
|
84 |
+
print(text_emotion)
|
85 |
|
86 |
video_capture = cv2.VideoCapture(video_file)
|
87 |
on_camera = 0
|
optimized.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import cv2
|
3 |
+
import face_recognition
|
4 |
+
import gradio as gr
|
5 |
+
import moviepy.editor as mp
|
6 |
+
import os
|
7 |
+
import time
|
8 |
+
import torchaudio
|
9 |
+
from fastai.vision.all import load_learner
|
10 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration, pipeline
|
11 |
+
|
12 |
+
emotion_pipeline = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion")
|
13 |
+
|
14 |
+
model = load_learner("gaze-recognizer-v3.pkl")
|
15 |
+
|
16 |
+
def extract_audio(video_path):
|
17 |
+
clip = mp.VideoFileClip(video_path)
|
18 |
+
clip.audio.write_audiofile("audio.wav")
|
19 |
+
|
20 |
+
def get_transcription(path):
|
21 |
+
extract_audio(path)
|
22 |
+
|
23 |
+
waveform, sample_rate = torchaudio.load("audio.wav")
|
24 |
+
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
|
25 |
+
waveform = resampler(waveform)[0]
|
26 |
+
|
27 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
28 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
29 |
+
model.config.forced_decoder_ids = None
|
30 |
+
|
31 |
+
input_features = processor(waveform.squeeze(dim=0), return_tensors="pt").input_features
|
32 |
+
predicted_ids = model.generate(input_features)
|
33 |
+
|
34 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
35 |
+
return transcription[0]
|
36 |
+
|
37 |
+
def analyze_emotion(text):
|
38 |
+
result = emotion_pipeline(text)
|
39 |
+
return result
|
40 |
+
|
41 |
+
def process_frame(frame):
|
42 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
43 |
+
face_locations = face_recognition.face_locations(gray)
|
44 |
+
|
45 |
+
if len(face_locations) > 0:
|
46 |
+
for top, right, bottom, left in face_locations:
|
47 |
+
face_image = gray[top:bottom, left:right]
|
48 |
+
resized_face_image = cv2.resize(face_image, (128, 128))
|
49 |
+
result = model.predict(resized_face_image)
|
50 |
+
|
51 |
+
return result[0]
|
52 |
+
|
53 |
+
return None
|
54 |
+
|
55 |
+
def video_processing(video_file, encoded_video):
|
56 |
+
if encoded_video != "":
|
57 |
+
decoded_file_data = base64.b64decode(encoded_video)
|
58 |
+
with open("temp_video.mp4", "wb") as f:
|
59 |
+
f.write(decoded_file_data)
|
60 |
+
video_file = "temp_video.mp4"
|
61 |
+
|
62 |
+
transcription = get_transcription(video_file)
|
63 |
+
print(transcription)
|
64 |
+
|
65 |
+
video_capture = cv2.VideoCapture(video_file)
|
66 |
+
on_camera = 0
|
67 |
+
off_camera = 0
|
68 |
+
total = 0
|
69 |
+
emotions = []
|
70 |
+
|
71 |
+
while True:
|
72 |
+
for _ in range(24 * 3):
|
73 |
+
ret, frame = video_capture.read()
|
74 |
+
if not ret:
|
75 |
+
break
|
76 |
+
|
77 |
+
if not ret:
|
78 |
+
break
|
79 |
+
|
80 |
+
result = process_frame(frame)
|
81 |
+
if result:
|
82 |
+
if result == 'on_camera':
|
83 |
+
on_camera += 1
|
84 |
+
elif result == 'off_camera':
|
85 |
+
off_camera += 1
|
86 |
+
total += 1
|
87 |
+
|
88 |
+
emotion_results = analyze_emotion(transcription)
|
89 |
+
emotions.append(emotion_results)
|
90 |
+
|
91 |
+
video_capture.release()
|
92 |
+
cv2.destroyAllWindows()
|
93 |
+
|
94 |
+
if os.path.exists("temp_video.mp4"):
|
95 |
+
os.remove("temp_video.mp4")
|
96 |
+
|
97 |
+
gaze_percentage = on_camera / total * 100 if total > 0
|