triAGI-Coder / app.py
acecalisto3's picture
Update app.py
f382b4f verified
raw
history blame
3.19 kB
import streamlit as st
import os
from dotenv import load_dotenv
from supplemental import EnhancedAIAgent, ProjectConfig
# Load environment variables
load_dotenv()
# Initialize EnhancedAIAgent
agent = EnhancedAIAgent(
name="WebDevMaster",
description="Expert in full-stack web development",
skills=["HTML", "CSS", "JavaScript", "React", "Node.js"],
model_name="gpt2"
)
st.title("EnhancedAIAgent Web Development Assistant")
st.write("""
This is a powerful AI-driven web development assistant that can help you with various tasks such as:
- Generating project configurations
- Creating project structures
- Implementing features
- Reviewing and optimizing code
- Generating documentation
- Suggesting tests and refactoring improvements
""")
option = st.selectbox(
"What would you like to do?",
("Generate Project Config", "Create Project Structure", "Implement Feature",
"Review Code", "Optimize Code", "Generate Documentation",
"Suggest Tests", "Explain Code", "Suggest Refactoring")
)
if option == "Generate Project Config":
project_description = st.text_area("Enter project description:")
if st.button("Generate"):
config = agent.generate_project_config(project_description)
st.json(config.__dict__)
elif option == "Create Project Structure":
config_json = st.text_area("Enter ProjectConfig JSON:")
if st.button("Create"):
config_dict = eval(config_json)
config = ProjectConfig(**config_dict)
structure = agent.create_project_structure(config)
st.json(structure)
elif option == "Implement Feature":
feature_description = st.text_area("Enter feature description:")
existing_code = st.text_area("Enter existing code (optional):")
if st.button("Implement"):
new_code = agent.implement_feature(feature_description, existing_code)
st.code(new_code)
elif option == "Review Code":
code = st.text_area("Enter code to review:")
if st.button("Review"):
review = agent.review_code(code)
st.write(review)
elif option == "Optimize Code":
code = st.text_area("Enter code to optimize:")
optimization_goal = st.text_input("Enter optimization goal:")
if st.button("Optimize"):
optimized_code = agent.optimize_code(code, optimization_goal)
st.code(optimized_code)
elif option == "Generate Documentation":
code = st.text_area("Enter code to document:")
if st.button("Generate"):
documentation = agent.generate_documentation(code)
st.markdown(documentation)
elif option == "Suggest Tests":
code = st.text_area("Enter code to suggest tests for:")
if st.button("Suggest"):
test_suggestions = agent.suggest_tests(code)
st.write(test_suggestions)
elif option == "Explain Code":
code = st.text_area("Enter code to explain:")
if st.button("Explain"):
explanation = agent.explain_code(code)
st.write(explanation)
elif option == "Suggest Refactoring":
code = st.text_area("Enter code to suggest refactoring:")
if st.button("Suggest"):
refactoring_suggestions = agent.suggest_refactoring(code)
st.write(refactoring_suggestions)