Thiago Hersan
update for new repos
918cb22
raw
history blame
870 Bytes
import gradio as gr
import numpy as np
from transformers import pipeline
pipeline_en = pipeline(task="text-to-speech", model="facebook/mms-tts-eng")
pipeline_pt = pipeline(task="text-to-speech", model="facebook/mms-tts-por")
def tts(lang):
pipeline = pipeline_en if lang == "en" else pipeline_pt
def tts_lang(txt):
res = pipeline(txt)
audio = (res['audio'].reshape(-1) * 2 ** 15).astype(np.int16)
return res['sampling_rate'], audio
return tts_lang
with gr.Blocks() as demo:
gr.Interface(
tts("en"),
inputs=gr.Textbox(
lines=1,
value="one two three four",
),
outputs="audio",
allow_flagging="never",
)
gr.Interface(
tts("pt"),
inputs=gr.Textbox(
lines=1,
value="um dois tres quatro",
),
outputs="audio",
allow_flagging="never",
)
if __name__ == "__main__":
demo.launch()