diff --git "a/agentic_index_st/aluminum_magnesium/docstore.json" "b/agentic_index_st/aluminum_magnesium/docstore.json" new file mode 100644--- /dev/null +++ "b/agentic_index_st/aluminum_magnesium/docstore.json" @@ -0,0 +1 @@ +{"docstore/metadata": {"9a18e54a-ddf1-496e-9042-963a11b1443a": {"doc_hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b"}, "e4bd01eb-3fa7-4b4d-a381-3ea6141b8be3": {"doc_hash": "3bed0e10d4d9381f526a4d283bc61ea9fdc66633201f8631b6761fc9dfce7e50", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "673424fd-d916-450a-b292-75b5bb84cb09": {"doc_hash": "3176775e793767fbbeff740a50f25ed30754384bad0d08b5a624f31cdda1a9b8", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "ed4ee51b-36a5-451c-b4f9-a3f57a0d3ab5": {"doc_hash": "8f9e56647b17074d25b708cf69c524c27de5f0a061c092911b9c09d7b972f6b2", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "99ecce95-6994-4014-8b7a-36e0c81eed90": {"doc_hash": "7e1796c4f504f3b4f3411ae9256055f109e23c43a6572e385a101d4f1dbb28b4", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "5c190567-758c-46b4-ac7c-2e0f1c618e4e": {"doc_hash": "bd3cfbc932e5dbf4bbffa41933c6687ae508a22c380d7c1ed410386eb74ab859", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "cfecc397-af6e-4729-b3ee-3a0ec15ffff7": {"doc_hash": "11ae7411863dc767e7ca71bdbf654eeaaaf3ac42487d3aabf3b0afd008c8d70d", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "2d6ca73c-9c31-4a80-a61a-784342cde399": {"doc_hash": "cccd0ab64c5b8c37295ddbeecb155d1f596d6ede1ac99e50dc48954fee6939bc", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "bb840724-5538-4bde-843e-9b92558941b9": {"doc_hash": "774f2000015d6a9e5ef37803044c130ca09ea2c6cff9b87cb40da8005c500f16", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "36c5414e-a0bb-4b38-a3c6-a02b39bc9e35": {"doc_hash": "ae1f6a05fb2be9d943b9b5015d51488959506cd206c523434c99ceabff970202", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "81a0197c-6637-42df-a7d5-ca885d3d06d8": {"doc_hash": "7f9424a48698363445b405ff622c4b13204d3a89746b21ac7aa3bc627cda381b", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "48c48556-bece-4843-a015-37eac49c1a6d": {"doc_hash": "77e52142cbcbc1a78792daea918e142d03dbbb910dc3dde3a479c97dfc32c575", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "4eca146a-b562-4033-8325-3fc7dc1fc342": {"doc_hash": "9e2590e10ff06b45b27be10e81ad4b7dca4a8d16da3eb8783c5127049f1f6301", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "82be0d54-cd1f-440e-b6b7-034148371aac": {"doc_hash": "bdf93cfa3f106ecac55673ef77c31d5b5460d49d82ab0b5bb5a1e5314c0ca5a4", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "1a5755ec-1470-4e34-b368-4a45b33c4522": {"doc_hash": "e207e5aea60b1e163dd2e411db8de7e3c500db2281a466b6a016f0a2d0c9bfb2", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "0c3530d8-e8c5-4150-bedb-e9b50ec5b9f8": {"doc_hash": "a738a32a5d2e794fcfb96f77fefcdd4838616cf31e5ec3f19ef445adeb79fe8a", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "3b806712-5617-4bd3-bdc8-1d89b5751653": {"doc_hash": "826254883704ccf6fe95075973bce158c6da4e5f63850c65e94a8e673c23230b", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "7330391f-03c6-4315-9bd3-b376521f83fd": {"doc_hash": "8ba2818d453b0298d11b81347ed2fc662b84ee53c1a033399d91ed92aa816066", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "2592b19c-69d6-4f0f-b392-3af1656d887d": {"doc_hash": "30a0f04bfda334cdaa56af5ea33dba10bc3642566fe23ed8cdd9de37828ec2e1", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "0c2e4eca-04e0-4228-84f6-8d9540ba34f4": {"doc_hash": "b949361a5b2c8bda41f0872b36a4b94a246163e3115d09d191b19090f31bdde4", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "28ce0338-5e29-40c8-a713-cb86d5d79fc8": {"doc_hash": "79d2e17d98a33435a15116afc6628b3bffdef4258cf1a1d7847c6ce3c7339a86", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "c832828b-552e-472e-82ad-f3ff4448f72e": {"doc_hash": "72aa2fefab3bb4fcf8fe17b0d6eef12152dd27a13a823c5d2133a8246068a9a0", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "c79760a7-e752-4787-b5a7-24db5e2f76d8": {"doc_hash": "39fb24f67b4aeaad9fb203db7d097348b01c0cf2e47ba2b1ac2be6f7d19d19bc", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "abd3a2a7-00b9-4afe-83f5-dfae36ab32f6": {"doc_hash": "a310fc8a8440e987336809e7f5e230eab2eefd7dcfe47ae38075e4bd473b2e6c", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "2a0fcb8c-991c-4bc0-9be5-4643900f4bd5": {"doc_hash": "a919eb8da617b7765c9cb1dd0e74e7cf189a4b13be25b1f15c1111b2845ae1f4", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "f79ca2b0-3439-4842-8e57-367d07a9c2d7": {"doc_hash": "f13fd24276c71601204f323cedd359264d860cb37273128d9ada44cdfed9f9cd", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "ac95bbc2-1f8f-4aee-9b77-27dbb16f6bbb": {"doc_hash": "77d01cc591fca1265494ece1c4f6829f3ae11a2671dd62c44c95015a7eb45c96", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "56f3b1fc-e638-42e0-a2d2-c1b91710efe9": {"doc_hash": "05e8f70e304606a599d0acdef0c1b8f1085bcf2b4170adf4ca7fc9107362c8e5", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "5d1fa984-43ca-452f-9015-66ab8fe879d7": {"doc_hash": "7511efeae7ffe882d02b3aea4fa7775e78ed63ef606c791dda481f0d8781efc4", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "3ec373f6-5abc-47e3-885c-4ba6f67b4352": {"doc_hash": "ab159240bb01f6fb5fb65a18f5659e579b7616a9f8d74f309f4156e606ae540b", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "c3f304a4-e0c7-40b5-90e5-d9e99ef97007": {"doc_hash": "eb89ccef7e8f2f159929c32f11201f41ccaf86afdd432e5269cf166005eb9783", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "b31335e2-ac57-4a66-820b-b87998accc9e": {"doc_hash": "06f515e42343cdbcc63fc7af6fd3da802d2c0e82f49d1e17fb86d893ee4c576b", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "907334f6-160e-45d6-ab4a-5273c568a6b3": {"doc_hash": "4ff06a8e09fd8b4c12b9a309adbf2343d29e7b5cb6d5875f61ca43a17dfb778b", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "10e8ec3e-4a22-459f-a3fb-eb6b537e6c61": {"doc_hash": "41fc138901ca5f3d2caa27ffe42657e42c461c2a4d8e03a73ac683d6a52c0c84", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "54ca17ed-07cf-4af4-8b9b-53f93b6d1c12": {"doc_hash": "d38bd01c69565803f7e0d501eec501b1b51ddf74f286cca6ba9072697924a942", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "aa53506c-5961-4f97-b0b2-b334b648a052": {"doc_hash": "9d5e50f4ace327891e89de2b29f154747622ec6c19395d1fbf5dcd9b8122bd8d", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "4fe633fc-1f81-40ea-990a-6883ae5cc153": {"doc_hash": "f3237ff721ba8fe05402ae9ca7d9d221c49dbfacca11415335f12c20f20826ba", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "d8a9ef1e-93b2-4d87-a33a-3279db65af14": {"doc_hash": "08d7b5793bf38002e4398fb1a76cca1f539db0aa154bc112fdb1749b2ac8dd42", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "3e4ad4b6-8c13-41e1-8e7b-1385bd1a324f": {"doc_hash": "8819c7377504a5920b108499a43372af84649d8ffc7be647a1d035f9bbd3eb03", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "b272570a-eae0-4341-844b-96397a39bf72": {"doc_hash": "d3cd469c587e0609703fb20b4071b95fd128d29f72fee448d1ef249e4939cbea", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "07898340-a860-4649-9219-0876339685a1": {"doc_hash": "43cade4db7f206ccd3c36c03db8ece2ca4e039623153d8cd853ec93996e1286e", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "ffa63324-5ed8-4273-ad92-a5a7d63721b2": {"doc_hash": "27ca621e3c5c885da2a464e0ad067e1630607f70aa9a2550e947ea1cb7231c49", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "e8d20761-c979-4b2f-82cb-69ebe4429642": {"doc_hash": "9b8b9e7d6cd931977ee51b57118e45216c1b57b3c3c4c4c9bfd35c9ae5c13960", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "2ebf4c3d-3ca2-4096-a4b0-58de45bab59b": {"doc_hash": "1145e0ad46c9400ea73509d361541cdb0e858385216be18bfda58b6c204cf528", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "4cec025f-2498-411f-86f6-4d03c6346eab": {"doc_hash": "9b4366b3319817e7eaffd025200584a27439fe4226e5a40cc95769739c527882", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "26bce920-1a7e-4fc3-90c7-b891a2e30029": {"doc_hash": "a6c9e271d2affe061a761ef9a6216882457b8934ec3d3d53d2754845c62ca158", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "bf9ff556-444c-4f2c-98ff-473ac9cb54e8": {"doc_hash": "85523e0647c819923d7ce16ad6bfb29de61a123ff56256aa3300f54a4c33a6c3", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "67ea6b1c-83a7-4852-999e-642ba5f783c5": {"doc_hash": "db0760587668b2128e07850639eeb92b1e3352f21ec525bd02e64ed09f6221e7", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "4c63ae86-1565-4493-927d-409495ee4a42": {"doc_hash": "9f1ff706fc5be34e2395eb134a930aa0b459e326b6fb61c5cee6218b2a925f99", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "6dd4a79c-b35f-4f6e-919c-11892cf155b0": {"doc_hash": "a3d8ba22cfeb322315580c10d06cba50a3a18420cde38930c904062c0b261ddc", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "aa5111e2-21f9-4544-b49b-ec80d909aff9": {"doc_hash": "36ae3064e35bddc2540992ec8b13bc13215b34bae19763fb900af57caaff3c18", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "4f098efd-d838-4081-9694-e903a81a695d": {"doc_hash": "c093bfbcf8485236685367a880f9e13d19ac11e8923c0ac9f66e07df60efdb8a", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "5a068710-18a1-43bd-9de9-c6980b846d60": {"doc_hash": "04ccc347e62f0f1cffc3eb9da4f2c73e82f849b97c3a0d580aac2dc8e723f96a", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "c25cba29-6ec1-4d72-8927-70c5edbcb6aa": {"doc_hash": "ccb8fd311f12d7ecb694c81f42f3b1320e8cd47d4080ef7c67e245fef1c142d8", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "670fae95-1489-43df-86bc-26b65555b40a": {"doc_hash": "67af59d97f540c80d9734fd79a1291048ba8935314b546c9485b9200f21dbd6a", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "57838dbe-47e5-4e43-ba29-6bf178028ca3": {"doc_hash": "fb1b7a3993ff5c904d37c3e0cc9d29f601ea8f9dd457394a0bb11d8d20d33772", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "19bbac30-e545-44ad-a880-86e06b655b46": {"doc_hash": "43f3330967d2f140ba111ac8054369fc0f52d30979a6058a87213be5e1838c98", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "23f2d394-6ec9-442b-9a34-994f5189f86d": {"doc_hash": "5889237edf420dda74f121dec6cf18aaebde5ae3d94941dabb1997ebead7ccbb", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "c697a27b-7995-42e7-8388-6cd361310a57": {"doc_hash": "4e7e2d620bd4c512b8d3bac6af22d81418fa3454d4507ce7ab13bea260bf99f0", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "59ac3f05-e94b-424b-8fa5-c6e8002bf93f": {"doc_hash": "2059b6133b4ac4366c06906251ec48a8cbfa0e0fb40fab3dcce73cec5a743ba6", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "99cbdec6-e4bb-4473-bd56-40f60b10a7ef": {"doc_hash": "b30769236dd648d6579c4755e7007dbbf622679acef0675aff686e53a9356857", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "a64cc6cb-e9fc-42ad-b6a9-9b38e045ef86": {"doc_hash": "429f4817e3c86fb5a44d9a372517be0f0e2e9e318f12bb30d9d51110c50b6460", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "0be36d74-8168-40a6-9b2c-86e585ca0a7c": {"doc_hash": "4c0154cc5296d162099560c56604adcfb1ede69797f7e6c8fe65e4ea5bcef20e", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "69b03a7b-29e4-48dc-a94d-69a6fe0c96f7": {"doc_hash": "862e657688f2cc7178aac4a3edda5978a712c3db7c7815f354719a9fa84f64fb", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "dafdd05f-f077-4848-a114-82459c16b0bc": {"doc_hash": "a4070bf20001dda0b7483d3f5cc29eaf44718e5ba6f4c5a0dc09e75fcfb4a1e3", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "9ef9bc3f-9d0b-4187-ac6a-9e86eb2fb0d7": {"doc_hash": "7133704fcea1b0437cf401f3705452d8fcaa19423289842592db999c72ff0ae9", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "8577b3f2-8d77-4a39-9a02-bd100e91685c": {"doc_hash": "247ea07e300b7d294d58973a450190d75203c44642ca33e5417f1a3be5253185", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "3a0a24f3-e769-486b-96e0-de3692a77dab": {"doc_hash": "c36d28a45d5db884f15740b5cca2b82ec0b3c2c29a472415512935bf5475708e", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "1ab625a4-f9b9-4e80-8c1b-2ab12a7c6c26": {"doc_hash": "816535ea3bb6c298e0b1aadfb9f4c95cde995564793e6ac8d487f551b539f12f", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "c5881c90-aff7-4df7-9136-6c3ae77b894c": {"doc_hash": "b0d5aef911f3038ac22c0ea4aeadfa75da5b16a9ff0bc4c61f96c8c74c19f57f", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "4a10cc81-261f-41fc-b267-8fca901bb262": {"doc_hash": "ffdb81309ead980fc60878e9d56bd257dc2c3177f7a736a65df6f4d990c462cc", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "6144898a-e7cd-40fc-96a7-e04e691cb259": {"doc_hash": "36d9359eda7853cb2696715b9f97711bf887cb6855c068bf0a539ba001061677", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "0da32b0c-1ee5-42bb-85c1-e44863b8bf15": {"doc_hash": "df996625d933ac821d40ef2f59bde0ba035971cbc2eadd66d2a07f50b98664c5", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "c5819f9b-84b9-4086-9153-8507cecf0475": {"doc_hash": "39a5e05c0a204b9e614192e0de2178a1fe7d95b69c9e525c5e79970bb9afad76", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "5321f1ec-8a55-4ad7-97f6-b5d806b56481": {"doc_hash": "e83a28cdb6658273fcd2ebb99e29b9345838267292d7c9c7f11744e59e773a2c", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "dcd750c0-23aa-49f3-8055-3f02d134a827": {"doc_hash": "f0e8929bceb6360f91a1f58e4b2888719c16a5e5a750914b01ab3813112f114e", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "1c36a1ca-3004-4f4e-ab8a-c98ee8c1cacd": {"doc_hash": "2c352449197d521ee2e00ced32ccd01e7a3fc4f1e58360eb98616b31de6d4a77", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "cb30f61d-facc-481d-8284-7a523c9ba61b": {"doc_hash": "a4a7919053e90b0cced26ce91ea7459f265fec678e68e8d16a8b897351486f87", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "c0190558-a3cc-48c0-a4b7-b21e4e88789e": {"doc_hash": "e76934294dcc8822c4823f3f487af517ff0b9c11fc5dcf21e503b44f290070f7", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "3907ac02-e706-43aa-8ec9-91b032752c86": {"doc_hash": "ee59d6ce47f34c88f056da0a1537e47f4b6bbbc78420a1071031e1222b2270a2", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "02339fb2-e1a4-4777-b1ca-5c73b8771270": {"doc_hash": "01857e26d4cff5f92964dd1e9451c742d421ba781d1893e2af576f7ccfb32701", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "3a4e95cf-322f-4711-9bd0-ad526fb87d91": {"doc_hash": "fe3592bd46a488c62b39201088b979f7707d94a6895d01459c7bab50813b4b4e", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "e2ce9b03-eade-4174-ae33-911e97d095ce": {"doc_hash": "0cc240e5ad25ee6d91870e2796201f579e421be6f356ee8ed5131d7e58570b34", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "566bebaf-ff58-4879-8b53-346cd4348907": {"doc_hash": "f3916fa166340e221f74ec2984b8598e6d4d7634039af4f6187fefaaa71c7aac", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "c9a5e985-c7d1-4595-83d2-d79ce264abcd": {"doc_hash": "3de7f7d3be1f2037db123cc1c70682018f69d091a2cb9ea125f555d96ee250bd", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "d5fc34f7-109e-4633-8aa4-a967050815f6": {"doc_hash": "4f18526e5ffd69b7b4e1d7177476cf6a93e236fac6e34bd9a7a48da053f42266", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "46fe9d2d-f09d-4d15-97d5-a5997db55104": {"doc_hash": "ffea6ed672d540b2af252f7733e77fa911e101e7a722cba3dbe14e44320ab136", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "a2d814d7-c033-4b8d-8dda-fff09da8faf4": {"doc_hash": "48957ef23b20bab9e3d86410840209378755faae5134a98a0011d8778263e43a", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "78cfa629-e466-41ee-a385-87f6e6fdd357": {"doc_hash": "97284e5e2e4e40b75d3814282464b397aa4259c799a904bec70ad808cf1f26f7", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "769413ae-8c11-499f-ad05-bd26e6b890a9": {"doc_hash": "0f3ce80c11d729bc153a727a0990bc06302812b05939610a775a68e3cd5c2027", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "2833ee28-0440-4088-9370-42beff55e684": {"doc_hash": "3f305a3483fe821c75543bd328ddf02795d4037d91871e043e17ab115720b456", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "d08bac37-1f3c-4e5c-87f5-15893f68488b": {"doc_hash": "a46479cf1c29027aecc69d0042b8514fd8b2ccc6bdb8bbf20925e44576aafd07", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "a7ef2396-6eab-4f98-9de6-f670223c0fab": {"doc_hash": "62e2e59ac4f2ce634284214f5b1528a45446bce1cb496178917305125f13e066", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "3383bc3f-918c-4591-acc0-d3cd131e4510": {"doc_hash": "979deb815c3cb410269e71e8a02ca21ed3c5f6a1a01bfc1c44b1bae812028e01", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "ab791615-b307-480c-b6d9-838468ab8af9": {"doc_hash": "a6610fffc2334c2a78ea6de18e9b59a45e4cce4abb30b7b37896a9699334607f", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "eb5815c8-6c62-491a-930c-1937697a77a7": {"doc_hash": "9accda7d4b3c96356c665693f72824ea455fbbe9327c09d689247666429a3d5d", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "831181c0-1c6f-4cd5-8d98-5202c994988a": {"doc_hash": "30210c1d6708e116ec38fa8bd987c9511bb31780d109c539d53bff07f891db56", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "bba1cc5b-ae73-41ba-b5f8-1842b2053080": {"doc_hash": "928bdf16e2efd97715ee295a95f6d1b10a180107c11eff05b25e5e9d93c3ec63", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "f964a77c-d472-40b7-9511-39696d9844d8": {"doc_hash": "9aa864e833a89bce149c844f1e4791897c6e42382a8b6ecc8a44000c493cf563", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "7f3dcdeb-5ae5-4879-bf15-44176fe4c674": {"doc_hash": "ecfe54304678c52e37d8368b60c98d50b9c226b340ebfb4a1cafc0f1a8f23c5c", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "bccfce7d-f6d4-4c66-bb3d-43b80b3f417e": {"doc_hash": "95f7f893ed36ba208512cf8f768784bc04988870817f2246eaa5abc9f17b699f", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "3a7129e2-cc6f-47a4-bb3d-19ffad54801f": {"doc_hash": "a7724a3b4655804edd403454500269ca7a57f080104244cb5c8e531b671c6fc1", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "02c215cf-4c0b-482d-a58e-f5a39f2e1333": {"doc_hash": "9e0fb36296b43904d8142863b5138d070890ca8e6e0801433e3b7650b954dd39", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "5c0d43af-4ccb-4f69-b9dc-3a91946150bd": {"doc_hash": "fbe0fc2e0c9c90b4f9de374c883e269349a7c5238bf76121a3e14db6cc89669b", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "36b388dd-8dc7-4eb1-987e-0f381ed51893": {"doc_hash": "b7d3bfa4de1194104ecd2d5dad844400e7fd2d0a285127346c6224acc76a1da0", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "287e9b97-5f5b-4e22-8b6d-135537422451": {"doc_hash": "d72993581ce87a0efc2a97b770c6d64e0247a1ef4ca1f364f022eabca40c505a", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "d15af1bf-9056-4b90-ba72-c5129226d4eb": {"doc_hash": "cbb621abc986e82db09965bb95d288c8cdf01a85026c6577d4f5a75e0c7f2191", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "11d831ea-8cfc-4797-bfe3-7f3f4ed84c7e": {"doc_hash": "38a413fa28f75f7291d29ca4c2e034eef5923a760f50e7cf4bf1bd2a5d255b0c", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "0a9995be-0ddc-416b-9201-0ce33e7fe993": {"doc_hash": "264e2861b1dc3f0044e62cb465cfcae86adbeb6d898c93126b2e0a1652c428fa", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "857184c9-a2f2-4a94-9406-3d21bb995e36": {"doc_hash": "2ba9edfd942b930373e49e4bd818a8b216e0ed04bcc7e2b5623b206787d54631", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "08ad9555-da95-4b6a-be87-1bde785a4511": {"doc_hash": "20b1ad2f283b20a13300ec2cd05079efda5e68da15af8d6a5019a6cb5e81a461", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "e6763634-8a64-46e9-ace5-95492d7011b7": {"doc_hash": "87394405b4f07e226b04f20446c52887d739518a7916885c277df348a6967bbb", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "94997eed-961e-4cbd-a868-f7894373023c": {"doc_hash": "d9ece30b214852c50a041d10996651c28c7391474c984c121f2ee985c2af3a24", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "4fa54071-d6ef-40da-b945-053e190aa5cf": {"doc_hash": "57a10d62b2c749707f6eb1b1fe7f6159c8971788720328b7924b1f004aaeec95", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "7956b8c7-c241-45dd-85c5-a79f1ab64491": {"doc_hash": "18614e5e61254c8be99a320d1c907178bb05b01ae4cf78b59c9baf510842bebb", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "c0b094e0-7fd5-49f4-ab56-68f2d7e19e12": {"doc_hash": "8d35c27aac10f6417fb5e66cd2317e33264a0fb93eb6affdb064298b5ca1cf61", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "bca3ca16-3799-46d8-831b-ed0483adca49": {"doc_hash": "5c616604bdcf34636ee11b3801ab15e5f299848eb77149ed81072184b415bd74", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "7c5318ab-bb55-4990-97d2-c9e792b0ba99": {"doc_hash": "b9ebcadc77fe08c443267088c3982f24aa2dbd86165fd9b7692af7afd56aadff", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "11230cca-5c91-4eb7-8653-c2f50d480017": {"doc_hash": "f1c25fb7f14a135788b98ea1e3020cf9fc8f4fb6e3df9d5f28ba9964ef55033e", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "ef8f5ac4-7688-4e32-a154-d8128c0c49e1": {"doc_hash": "42f27eed65ca4fecd084992fc222c3c012de329fee977a8520fd8b7d48c4b4f0", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "71d84e58-6a75-49e3-8db2-8f2b7bc3d346": {"doc_hash": "40426d6925a81ebd82a079bf24186aa3b5b8800ea383ce09582902c3b6401598", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "9b65f919-5a4f-4a63-bba1-d2441a1b650d": {"doc_hash": "d3374128585fe809cffff8a96f528394f7c412a196754a7d21f3c4d7b9d9c559", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}, "9c9771d7-630e-44b3-8637-aab01389854f": {"doc_hash": "76df6a525fb17009d5ed2a29e356bb9cb8f5c57c19bc8000f509f46d216e050f", "ref_doc_id": "9a18e54a-ddf1-496e-9042-963a11b1443a"}}, "docstore/data": {"e4bd01eb-3fa7-4b4d-a381-3ea6141b8be3": {"__data__": {"id_": "e4bd01eb-3fa7-4b4d-a381-3ea6141b8be3", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "673424fd-d916-450a-b292-75b5bb84cb09", "node_type": "1", "metadata": {}, "hash": "28f2dccb8dfaa1df156f7cd8d69ae0d061af1183a10d975652c7e73783631f91", "class_name": "RelatedNodeInfo"}}, "text": "\\documentclass[10pt]{article}\n\\usepackage[utf8]{inputenc}\n\\usepackage[T1]{fontenc}\n\\usepackage{amsmath}\n\\usepackage{amsfonts}\n\\usepackage{amssymb}\n\\usepackage[version=4]{mhchem}\n\\usepackage{stmaryrd}\n\\usepackage{graphicx}\n\\usepackage[export]{adjustbox}\n\\graphicspath{ {./images/} }\n\\usepackage{multirow}\n\\usepackage{bbold}\n\n\\title{A Review of Laser Powder Bed Fusion Additive Manufacturing of Aluminium Alloys: Microstructure and Properties }\n\n\n\\author{H. R. Kotadia ${ }^{1}$, G. Gibbons ${ }^{1}$, A. Das ${ }^{2}$, P. D. Howes ${ }^{3}$\\\\\n${ }^{1}$ WMG (Warwick Manufacturing Group), University of Warwick, Coventry, CV4 7AL, UK\\\\\n${ }^{2}$ College of Engineering, Swansea University Bay Campus, Fabian Way, Swansea, SA1 8EN,\\\\\nUK\\\\\n${ }^{3}$ School of Engineering, London South Bank University, 103 Borough Road, London SE1\\\\\nOAA, UK}\n\\date{}\n\n\n\\begin{document}\n\\maketitle\nAbstract: Additive manufacturing (AM) of metallic alloys for structural and functional applications has attracted significant interest in the last two decades as it brings a step change in the philosophy of design and manufacturing. The ability to design and fabricate complex geometries not amenable to conventional manufacturing, and the potential to reduce component weight without compromising performance, is particularly attractive for aerospace and automotive applications. This has culminated in rapid progress in AM with Ti- and Nibased alloys. In contrast, the development of AM with Al-alloys has been slow, despite their widespread adoption in industry owing to an excellent combination of low density and high strength-to-weight ratio. Research to date has focused on castable and weldable AlSiMg-based alloys (which are less desirable for demanding structural applications), as well as on the development of new AM-specific AlMgSc alloys (based on 5xxx series). However, high strength wrought Al-alloys have typically been unsuitable for AM due to their unfavourable microstructural characteristics under rapid directional solidification conditions. Nevertheless, recent research has shown that there is promise in overcoming the associated challenges. Herein, we present a review of the current status of AM with Al-alloys. We primarily focus on the microstructural characteristics, and on exploring how these influence mechanical properties. The current metallurgical understanding of microstructure and defect formation in $\\mathrm{Al}$-alloys during $\\mathrm{AM}$ is discussed, along with recent promising research exploring various microstructural modification methodologies. Finally, the remaining challenges in the development of AM with high-strength Al-alloys are discussed.\n\nKeywords: Aluminium; Additive Manufacturing; Powder Bed Fusion (PBF); Solidification; Microstructure; Mechanical properties.\n\n\\section*{1 Introduction}\nAfter over twenty years of development, metal additive manufacturing (AM) has become one of the most exciting and rapidly developing methodologies in advanced manufacturing [1]. It is receiving significant attention in metal manufacturing as it overcomes many limitations that were once considered inherent in mass production, for example the production of complex geometries, easily customisable structures, and significant weight saving while maintaining strength and structural integrity [1-4]. The approach is inherently different to the more traditional processing methods (e.g. casting, rolling, extrusion and machining), as these formative and subtractive approaches are replaced with layer-by-layer fabrication, literally the 'printing' of metal, pixel by pixel. This allows unprecedented freedom in the manufacturing of complex structures, using unconventional materials with no additional tooling to achieve extremely high precision and control [5]. A further impressive advantage of AM is a significantly reduced manufacturing lead-time, as new designs/components will have a shorter time to market, and customer demand will be met more quickly, all with much reduced material waste during the manufacture [5-7]. Such advantages do, however, need to be balanced against some inherent disadvantages, including the current high cost of AM systems, potentially long build times, and complex and expensive powder feedstocks.\n\nA range of important metal alloy systems have been used for AM, mainly by powder bed fusion (PBF), which uses an intense heat source (e.g. laser, electron beam, plasma-electric arc) to yield highly selective melting of forming layers [4, 5, 8].", "start_char_idx": 0, "end_char_idx": 4505, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "673424fd-d916-450a-b292-75b5bb84cb09": {"__data__": {"id_": "673424fd-d916-450a-b292-75b5bb84cb09", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "e4bd01eb-3fa7-4b4d-a381-3ea6141b8be3", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "3bed0e10d4d9381f526a4d283bc61ea9fdc66633201f8631b6761fc9dfce7e50", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "ed4ee51b-36a5-451c-b4f9-a3f57a0d3ab5", "node_type": "1", "metadata": {}, "hash": "a5f5a7ab50549bde5fe3387ad7d514f5bc2ea0011c297d8a07ca99b3f2d92bc3", "class_name": "RelatedNodeInfo"}}, "text": "This allows unprecedented freedom in the manufacturing of complex structures, using unconventional materials with no additional tooling to achieve extremely high precision and control [5]. A further impressive advantage of AM is a significantly reduced manufacturing lead-time, as new designs/components will have a shorter time to market, and customer demand will be met more quickly, all with much reduced material waste during the manufacture [5-7]. Such advantages do, however, need to be balanced against some inherent disadvantages, including the current high cost of AM systems, potentially long build times, and complex and expensive powder feedstocks.\n\nA range of important metal alloy systems have been used for AM, mainly by powder bed fusion (PBF), which uses an intense heat source (e.g. laser, electron beam, plasma-electric arc) to yield highly selective melting of forming layers [4, 5, 8]. A majority of metal AM research focuses on high temperature alloys, such as Ti-6Al-4V [9-12], TiAl [13, 14], Inconel 625/718 [15-20] and Cobalt Chromium (CoCr) [21, 22], and indeed these have found application in real-world AM practices. In the last five years, a significant amount of research has been carried out on various grades of steel, including stainless steel (austenitic, maraging and precipitation hardened), low carbon steel, and tool steels [2, 23, 24]. In comparison, exploration of AM capability of Al-alloys has been limited [25]. Importantly, \"printable\" Al-alloys are still near eutectic Al-Si based alloys (e.g. AlSi7Mg, AlSi10Mg and AlSi12Mg), because of their short freezing range $[1,26]$.\n\nFor widespread industrial adoption of AM, it is essential that manufactured objects provide the desired properties for the intended use, whilst keeping cost-of-production competitive. It is, therefore, necessary to improve the fundamental understanding of AM metal processing through careful investigation of multiple chemical and physical phenomena across various time\\\\\nand length scales (Figure 1) [27]. An important consideration is that, when a laser beam irradiates a metal powder, all the four states of matter (i.e. solid, liquid, gas, plasma) are present simultaneously, giving rise to material interactions that are unseen in conventional processing. Further, the use of rapid thermal cycling gives rise to sharp thermal gradients and possible metastable physical and chemical states that can generate undesirable metallurgical defects [28]. This is a key problem in AM of Al, and has become a barrier to widespread adoption, along with the currently limited number of suitable alloys.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-03}\n\\end{center}\n\nFigure 1. Schematic illustration of the Laser-Powder Bed Fusion (L-PBF) process and associated multiple physical and chemical phenomena, showing the various phenomena influenced by laser-powder interaction, solidification and solid-state transformation. Adapted from Ref. [27].\n\nThis review aims to provide an overview of the various different Al-alloys in use today in Laser PBF (L-PBF) based AM, highlighting the progress made in the last five years. The main focus is microstructural evolution with respect to alloy chemistry, in particular the effect of rapid solidification in comparison with conventional manufacturing, and the resultant mechanical properties. We do not cover the various AM processing methods and parameters required to achieve higher relative density in detail; such information can be found in other recent reviews [1-4, 25, 26]. Instead, the influence of process parameters on the microstructure, wherever relevant, is discussed. It has been decided to restrict the scope to the L-PBF process. However, electron beam melting (EBM) is entirely capable of processing Al, and the reader is encouraged to seek information available in other reviews. Some of the sections are kept brief, for two reasons. First, when an already detailed review has been published covering that area, and second, when no clear conclusion could be drawn from the existing literature. The discussion\\\\\nis split into the following sections: (i) cast Al-Si alloys, (iii) wrought Al-Alloys covering AM specific alloy, (iii) primary-Al grain refining, and (iv) powder feedstock.", "start_char_idx": 3599, "end_char_idx": 7898, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "ed4ee51b-36a5-451c-b4f9-a3f57a0d3ab5": {"__data__": {"id_": "ed4ee51b-36a5-451c-b4f9-a3f57a0d3ab5", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "673424fd-d916-450a-b292-75b5bb84cb09", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "3176775e793767fbbeff740a50f25ed30754384bad0d08b5a624f31cdda1a9b8", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "99ecce95-6994-4014-8b7a-36e0c81eed90", "node_type": "1", "metadata": {}, "hash": "2bc709131b28c159d07988ff57d092f9f2cbd613104ddcf373feb34a1dab002a", "class_name": "RelatedNodeInfo"}}, "text": "We do not cover the various AM processing methods and parameters required to achieve higher relative density in detail; such information can be found in other recent reviews [1-4, 25, 26]. Instead, the influence of process parameters on the microstructure, wherever relevant, is discussed. It has been decided to restrict the scope to the L-PBF process. However, electron beam melting (EBM) is entirely capable of processing Al, and the reader is encouraged to seek information available in other reviews. Some of the sections are kept brief, for two reasons. First, when an already detailed review has been published covering that area, and second, when no clear conclusion could be drawn from the existing literature. The discussion\\\\\nis split into the following sections: (i) cast Al-Si alloys, (iii) wrought Al-Alloys covering AM specific alloy, (iii) primary-Al grain refining, and (iv) powder feedstock.\n\n\\section*{2 Aluminium alloys and their applications}\n$\\mathrm{Al}$ is the second most widely used structural metal after steel, globally, with over $67 \\mathrm{Mt}$ produced in 2019 [29]. The use of Al-alloys continues to grow at around ca. 6\\% per annum [30], mainly due to its low density (three times lighter than steel), high corrosion resistance, and excellent combination of physical and mechanical properties [31]. The application of light alloys, predominantly Al-alloys, is projected to double within the transport sector in the next decade. The ASTM standard classification of Al-alloys splits them into two groups - cast and wrought \u2014 which are designated with a four-digit numerical code (Table 1) [31]. Currently, about $80 \\%$ of $\\mathrm{Al}$-alloy used in structural applications are wrought products [32], produced either by rolling, extrusion or forging. Cast Al-alloys are produced through various casting techniques, such as sand casting, gravity casting, high-pressure die casting (HPDC), and investment casting, depending on the alloys, component features (shape, size, quality) and cost considerations.\n\nFor structural applications, strengthening is essential for pure $\\mathrm{Al}$ as it is too weak in pure form. In contrast to steel, $\\mathrm{Al}$ does not exhibit an allotropic phase transformation, which limits strengthening via phase transformation. Cast $\\mathrm{Al}$-alloys mainly contain $\\mathrm{Si}$, with $\\mathrm{Cu}$ and $\\mathrm{Mg}$ as minor alloying elements. The addition of Si forms a classical eutectic system, improving castability and fluidity [31, 33]. The phase diagram (Figure 2 (a)) shows a eutectic point at ca. 12.7 wt. $\\%$ Si and $579{ }^{\\circ} \\mathrm{C}$ and the different microstructure formed due to a variation in alloy composition across the eutectic point is illustrated in Figure 2 (c). Al-Si based alloys used in $\\mathrm{AM}$ are often multicomponent, such as the popular AlSi10Mg alloy. Thermodynamic software can provide valuable information on the phase evolution and solidification parameters in such systems for assessing suitability of the alloy for AM as well as selection of process parameters. For example, ThermoCalc generated phase fraction data for AlSi10Mg presented in Figure 2 (b) not only shows the relative fraction of phases formed in the alloy, but also indicates a freezing point of $593{ }^{\\circ} \\mathrm{C}$ for $\\mathrm{Al}$ solidification, eutectic temperature of $574{ }^{\\circ} \\mathrm{C}$ and a freezing range of $31{ }^{\\circ} \\mathrm{C}$. The microstructure of cast $\\mathrm{Al}-\\mathrm{Si}$ alloys can be refined through chemical inoculation, for example with $\\mathrm{NiB}$ [34], to refine the primary $\\mathrm{Al}$ grain size, $\\mathrm{P}$ to refine primarySi [35], and Sr to refine eutectic Si [36-38]. Microstructural refinement can also be achieved by the application of physical force such as ultrasonication [39-43], shearing [44-46],\\\\\nelectromagnetic fields [47-49], and/or by modifying processing conditions [50, 51], such as cooling rate.", "start_char_idx": 6989, "end_char_idx": 10945, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "99ecce95-6994-4014-8b7a-36e0c81eed90": {"__data__": {"id_": "99ecce95-6994-4014-8b7a-36e0c81eed90", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "ed4ee51b-36a5-451c-b4f9-a3f57a0d3ab5", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "8f9e56647b17074d25b708cf69c524c27de5f0a061c092911b9c09d7b972f6b2", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "5c190567-758c-46b4-ac7c-2e0f1c618e4e", "node_type": "1", "metadata": {}, "hash": "aa540652b68150c1536ac8e59971442cf2738d60bdd326e7b00bdbd221d2ea94", "class_name": "RelatedNodeInfo"}}, "text": "The microstructure of cast $\\mathrm{Al}-\\mathrm{Si}$ alloys can be refined through chemical inoculation, for example with $\\mathrm{NiB}$ [34], to refine the primary $\\mathrm{Al}$ grain size, $\\mathrm{P}$ to refine primarySi [35], and Sr to refine eutectic Si [36-38]. Microstructural refinement can also be achieved by the application of physical force such as ultrasonication [39-43], shearing [44-46],\\\\\nelectromagnetic fields [47-49], and/or by modifying processing conditions [50, 51], such as cooling rate. Further, added elements such as $\\mathrm{Cu}$ and $\\mathrm{Mg}$ serves to improve mechanical properties through precipitation strengthening (using dispersion of $\\mathrm{Al}_{2} \\mathrm{Cu}, \\mathrm{Al}_{5} \\mathrm{Mg}_{8} \\mathrm{Cu}_{26}$ ) [31, 33]. Of the world production of $\\mathrm{Al}$, ca. $20 \\%$ is used for cast products with a wide range of applications, including automotive powertrains.\n\nWrought Al-alloys are separated into two distinct classes: heat treatable (2xxx, 6xxx, 7xxx) and non-heat treatable (1xxx, 3xxx, 5xxx). Non-heat-treatable alloys mainly achieve strength through cold work (strain hardening). For example, 5xxx AlMg(Mn) alloys have been shown to exhibit a decent combination of strength and formability. To achieve the desired mechanical properties, various alloying elements are added, followed by complex thermo-mechanical processing routes. Alloying elements such as $\\mathrm{Cu}, \\mathrm{Mg}, \\mathrm{Si}, \\mathrm{Zn}, \\mathrm{Li}, \\mathrm{Sc}$ are added into $\\mathrm{Al}$ to allow $\\mathrm{Al}_{2} \\mathrm{Cu}, \\mathrm{Al}_{2} \\mathrm{CuLi}, \\mathrm{Mg}_{5} \\mathrm{Si}_{4} \\mathrm{Al}_{2}, \\mathrm{Mg}_{2} \\mathrm{Si}, \\mathrm{MgZn}_{2}, \\mathrm{Al}_{3} \\mathrm{Sc}$ intermetallics to precipitate through suitable heat treatment [31, 33]. Further, some transition elements, e.g., Cr, Mn or Zr, can be added to form $\\mathrm{Al}_{12} \\mathrm{Mg}_{2} \\mathrm{Cr}, \\mathrm{Al}_{20} \\mathrm{CuMn}_{3}, \\mathrm{Al}_{12} \\mathrm{Mn}_{3} \\mathrm{Si}$ and $\\mathrm{Al}_{3} \\mathrm{Zr}$ dispersoid particles to allow control of grain structure during thermo-mechanical processing [52]. The coherency, volume fraction and distribution of these particles plays a key role in strengthening. Heat treatable $2 \\mathrm{xxx}, 6 \\mathrm{xxx}$ and $7 \\mathrm{xxx}$ alloys are used in aerospace and automotive applications due to their improved strength after heat treatment along with excellent corrosion resistance [31, 53]. It is worth mentioning that AM components experience completely different heating and cooling conditions to conventional manufacturing routes, therefore, the sequence and rate of precipitation phase formation can be very different. J\u00e4gle et al. [54] demonstrated that some precipitation phase can form during production of the powder feedstock and during the printing (due to repetitive heating and cooling). In addition, due to rapid solidification in AM, solute trapping is common. This also contributes precipitation strengthening during stress relieving treatment. Therefore, it is important to understand the entire AM cycle and control the thermal profile to achieve desirable precipitation phases and properties.\n\nTable 1. Cast and wrought alloy designation (alloy compositions are expressed in wt.\\%).", "start_char_idx": 10434, "end_char_idx": 13705, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "5c190567-758c-46b4-ac7c-2e0f1c618e4e": {"__data__": {"id_": "5c190567-758c-46b4-ac7c-2e0f1c618e4e", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "99ecce95-6994-4014-8b7a-36e0c81eed90", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "7e1796c4f504f3b4f3411ae9256055f109e23c43a6572e385a101d4f1dbb28b4", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "cfecc397-af6e-4729-b3ee-3a0ec15ffff7", "node_type": "1", "metadata": {}, "hash": "c2c627669fe3f5981c2c6ad03de7719dd8aed53e9bd328d13e5729adce135a06", "class_name": "RelatedNodeInfo"}}, "text": "Heat treatable $2 \\mathrm{xxx}, 6 \\mathrm{xxx}$ and $7 \\mathrm{xxx}$ alloys are used in aerospace and automotive applications due to their improved strength after heat treatment along with excellent corrosion resistance [31, 53]. It is worth mentioning that AM components experience completely different heating and cooling conditions to conventional manufacturing routes, therefore, the sequence and rate of precipitation phase formation can be very different. J\u00e4gle et al. [54] demonstrated that some precipitation phase can form during production of the powder feedstock and during the printing (due to repetitive heating and cooling). In addition, due to rapid solidification in AM, solute trapping is common. This also contributes precipitation strengthening during stress relieving treatment. Therefore, it is important to understand the entire AM cycle and control the thermal profile to achieve desirable precipitation phases and properties.\n\nTable 1. Cast and wrought alloy designation (alloy compositions are expressed in wt.\\%).\n\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|}\n\\hline\n\\multicolumn{2}{|c|}{Cast Aluminium Designation} & \\multicolumn{2}{|c|}{}\\begin{tabular}{l}\nWrought Aluminium \\\\\nDesignation \\\\\n\\end{tabular} & \\multirow{2}{*}{}\\begin{tabular}{l}\nApplications \\\\\nElectrical and \\\\\nchemical industries \\\\\n\\end{tabular} \\\\\n\\hline\n1xx.x & \\begin{tabular}{l}\n$\\mathrm{Al}(99 \\%$ minimum or \\\\\ngreater) \\\\\n\\end{tabular} & $1 \\mathrm{xxx}$ & \\begin{tabular}{l}\n$\\mathrm{Al} \\quad(99 \\%$ minimum or \\\\\ngreater $)-\\mathrm{H}$ \\\\\n\\end{tabular} & \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|}\n\\hline\n2xx.x & $\\mathrm{Al}-\\mathrm{Cu}(4 \\%$ to $4.6 \\%)$ & $2 x x x$ & $\\mathrm{Al}-\\mathrm{Cu}(2.2 \\%$ to $6.8 \\%)-\\mathrm{T}$ & \\begin{tabular}{l}\nHigh-strength \\\\\napplications, e.g. \\\\\naircraft \\\\\n\\end{tabular} \\\\\n\\hline\n3xx.x & \\begin{tabular}{l}\n$\\mathrm{Al}-\\mathrm{Si}(5 \\%$ to $17 \\%$ ) with \\\\\n$\\mathrm{Cu}$ or $\\mathrm{Mg}$ \\\\\n\\end{tabular} & $3 x x x$ & $\\mathrm{Al}-\\mathrm{Mn}(0.3 \\%$ to $1.5 \\%)-\\mathrm{H}$ & \\begin{tabular}{l}\nArchitectural and \\\\\ngeneral-purpose \\\\\napplications \\\\\n\\end{tabular} \\\\\n\\hline\n$4 \\mathrm{xx.x}$ & $\\mathrm{Al}-\\mathrm{Si}(5 \\%$ to $12 \\%)$ & $4 \\mathrm{xxx}$ & \\begin{tabular}{l}\nAl-Si $(3.6 \\%$ to $13.5 \\%)-\\mathrm{Cu}$ \\\\\n(0.1\\% to $4.7 \\%)-\\mathrm{Mg}(0.05 \\%$ \\\\\nto $1.3 \\%)-\\mathrm{H} / \\mathrm{T}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nWelding and brazing \\\\\nconsumables \\\\\n\\end{tabular} \\\\\n\\hline\n$5 x x . x$ & $\\mathrm{Al}-\\mathrm{Mg}(5 \\%$ to $12 \\%)$ & $5 x x x$ & $\\mathrm{Al}-\\mathrm{Mg}(0.5 \\%$ to $5.5 \\%)-\\mathrm{H}$ & \\begin{tabular}{l}\nRolled products: \\\\\nautomotive trim, boat \\\\\nhulls, architectural \\\\\ncomponents \\\\\n\\end{tabular} \\\\\n\\hline\n6xx.x & Unused series & $6 x x x$ & \\begin{tabular}{l}\nAl-Mg $(0.35 \\%$ to $1.5 \\%)-\\mathrm{Si}$ \\\\\n$(0.2 \\%$ to $1.8 \\%)-\\mathrm{T}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nStructural \\\\\napplications e.g.", "start_char_idx": 12666, "end_char_idx": 15623, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "cfecc397-af6e-4729-b3ee-3a0ec15ffff7": {"__data__": {"id_": "cfecc397-af6e-4729-b3ee-3a0ec15ffff7", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "5c190567-758c-46b4-ac7c-2e0f1c618e4e", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "bd3cfbc932e5dbf4bbffa41933c6687ae508a22c380d7c1ed410386eb74ab859", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "2d6ca73c-9c31-4a80-a61a-784342cde399", "node_type": "1", "metadata": {}, "hash": "8bebf4456d5641d6f61d4150e70bd9030d410b52a49da9201f32490c0c33c387", "class_name": "RelatedNodeInfo"}}, "text": "x$ & $\\mathrm{Al}-\\mathrm{Mg}(5 \\%$ to $12 \\%)$ & $5 x x x$ & $\\mathrm{Al}-\\mathrm{Mg}(0.5 \\%$ to $5.5 \\%)-\\mathrm{H}$ & \\begin{tabular}{l}\nRolled products: \\\\\nautomotive trim, boat \\\\\nhulls, architectural \\\\\ncomponents \\\\\n\\end{tabular} \\\\\n\\hline\n6xx.x & Unused series & $6 x x x$ & \\begin{tabular}{l}\nAl-Mg $(0.35 \\%$ to $1.5 \\%)-\\mathrm{Si}$ \\\\\n$(0.2 \\%$ to $1.8 \\%)-\\mathrm{T}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nStructural \\\\\napplications e.g. \\\\\nbody-in-white \\\\\n\\end{tabular} \\\\\n\\hline\n7XX.X & $\\mathrm{Al}-\\mathrm{Zn}(6.2 \\%$ to $7.5 \\%)$ & $7 \\mathrm{xxx}$ & \\begin{tabular}{l}\nAl-Zn $(0.8 \\%$ to $8.2 \\%)-\\mathrm{Mg}$ \\\\\n$(0.1 \\%$ to $3.4 \\%)-\\mathrm{Cu}(0.05 \\%$ \\\\\nto $2.6 \\%)-\\mathrm{T}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nHigh-strength \\\\\napplication, i.e. \\\\\naircraft structures \\\\\n\\end{tabular} \\\\\n\\hline\n8xx.x & $\\mathrm{Al}-\\mathrm{Sn}$ & $8 \\mathrm{xxx}$ & \\begin{tabular}{l}\nAl with other elements like \\\\\n$\\mathrm{Li}, \\mathrm{Fe}-\\mathrm{H} / \\mathrm{T}$ \\\\\n\\end{tabular} & \\\\\n\\hline\n9xX.x & Al with Other elements & $9 \\mathrm{xxx}$ & Unused series & \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\n$\\mathrm{H}$ : work hardening (non-heat-treatable); T: heat-treatable.\\\\\n(a)\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-07(1)}\n\\end{center}\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-07}\n\\end{center}\n\n(c)\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-07(2)}\n\nFigure 2. (a) Al-Si binary phase diagram, (b) Thermo Calc generated phase development in AlSi10Mg alloy (which have smaller freezing ranges compared to the wrought Al-alloys, Figure 11), and (c) three different types of microstructure that form in the Al-Si system, as labelled (where white and dark grey phases represent primary-Al, and Si, respectively).\n\n\\subsection*{2.1 AM of Al-alloys}\nProcessing with AM is inherently different to conventional casting, with significant advantages gained through reduced manufacturing steps and much-reduced waste [5]. The basic process of PBF AM requires the application of a laser to melt and consolidate powder feedstock in layers, gradually building up a 3D structure. Coupled with computer-aided-design (CAD), this approach is extremely powerful, and can achieve structural and geometric complexity that is unthinkable with traditional processing (e.g. complex foams, hollow structures, lattices), ultimately allowing highly effective use of material whilst obtaining excellent strength-toweight ratio [55]. Lattice structures can be used for further weight saving, to reduced vibration and noise [56]. Further, components can be fabricated with a gradually altering material composition and organisation within a single structure, for example to achieve site-specific properties and 'multifunctionality', balancing mechanical, thermal, magnetic and energy absorbing properties in a way that is otherwise inaccessible.\n\nRapid solidification of metal alloys may lead to unique structural and mechanical properties, unachievable through conventional solidification [57, 58]. However, conventional casting does not permit high cooling rates through the entire cast, limiting this method to small or thin parts\\\\\n(e.g. filaments, ribbons, flakes).", "start_char_idx": 15173, "end_char_idx": 18465, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "2d6ca73c-9c31-4a80-a61a-784342cde399": {"__data__": {"id_": "2d6ca73c-9c31-4a80-a61a-784342cde399", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "cfecc397-af6e-4729-b3ee-3a0ec15ffff7", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "11ae7411863dc767e7ca71bdbf654eeaaaf3ac42487d3aabf3b0afd008c8d70d", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "bb840724-5538-4bde-843e-9b92558941b9", "node_type": "1", "metadata": {}, "hash": "d2ff2e4022757be23a410b49f2a2d7042e5f06430864ff105634f8a2b153ff7e", "class_name": "RelatedNodeInfo"}}, "text": "complex foams, hollow structures, lattices), ultimately allowing highly effective use of material whilst obtaining excellent strength-toweight ratio [55]. Lattice structures can be used for further weight saving, to reduced vibration and noise [56]. Further, components can be fabricated with a gradually altering material composition and organisation within a single structure, for example to achieve site-specific properties and 'multifunctionality', balancing mechanical, thermal, magnetic and energy absorbing properties in a way that is otherwise inaccessible.\n\nRapid solidification of metal alloys may lead to unique structural and mechanical properties, unachievable through conventional solidification [57, 58]. However, conventional casting does not permit high cooling rates through the entire cast, limiting this method to small or thin parts\\\\\n(e.g. filaments, ribbons, flakes). In contrast, PBF in AM exhibits significant advantages, where laser heating is applied to only small volumes of material at a time. Coupled with short laser irradiation times, very high heating and cooling rates can be achieved $\\left(10^{3}-10^{8} \\mathrm{~K} / \\mathrm{s}\\right)[59,60]$. This results in very different processing conditions, and subsequent metallurgical response, compared to conventional casting processes.\n\nOne of the most important features under PBF AM is the rapid heating and cooling experienced. The effect of rapid solidification on the Al-alloy microstructure can be delineated along three lines [61]. First, constitutional changes arise due to a high degree of undercooling during rapid solidification. In more extreme conditions this can result in partitionless (i.e. segregation free) solidification. Second, individual phase refinements occur, where the degree of microstructural refinement is closely linked to the velocity of the solidification interface [62, 63]. Third, formation of metastable phases (e.g. $\\mathrm{Al}_{6} \\mathrm{Fe}$ in $\\mathrm{Al}-\\mathrm{Fe}$ [64], and $\\mathrm{Al}_{6} \\mathrm{Mn}$ in $\\mathrm{Al}-\\mathrm{Mn}$ [65]), including amorphous structures formed by some rapidly solidifying alloys, and quasicrystalline phases that may form depending on the alloying addition even at modest cooling rates. The intrinsic microstructural features typically seen in aluminium alloys after rapid solidification include refined microstructural features such as reduced dendritic arm spacing, a decrease in segregation patterns, solid solubility extensions of alloying elements in primary-Al (solute trapping effect), metastable crystalline phase formation, amorphous structures, and quasicrystals [61].\n\nIt is understood that grain structure has a major influence on material properties. Grain size greatly influences mechanical strength, as elucidated by the Hall-Petch relationship [66, 67] $\\left(\\sigma_{y}=\\sigma_{0}+k / \\sqrt{d}\\right)$, which shows that the yield strength $\\left(\\sigma_{y}\\right)$ of polycrystals is inversely proportional to the square-root of grain size $(d)$, where $\\sigma_{0}$ is the frictional stress (which is independent of grain size), and $k$ is a material constant. High cooling rates during manufacturing makes PBF an excellent candidate for creating fine microstructures, which holds great promise to improve mechanical properties of components compared to manufacturing based on conventional casting methods. The grain size of L-PBF of $\\mathrm{Al}$ alloys $(\\sim \\geq 50 \\mu \\mathrm{m})$ typically falls within the original Hall-Petch relation leading to strength enhancement. However, many grains have a propensity to columnar rather than equiaxed morphology in the building direction. Therefore, mechanical properties could be anisotropic and it is also important for researchers to be specific about grain dimensions used for analysis. Alloy strengthening can also be improved and tailored by controlling eutectic, precipitation, dispersoids, intermetallic and metastable phases [33].\n\nThe use of $\\mathrm{Al}$ powders in $\\mathrm{PBF}$ is especially promising due to the high thermal conductivity and low specific gravity of $\\mathrm{Al}$, which should allow the fabrication of lightweight and heatcontrollable builds (e.g. heat sinks and heat exchangers). However, most of the current \"printable\" Al alloys are still the relatively low strength near-eutectic AlSiMg-based alloys rather than those based on high-strength wrought alloys [26, 68].", "start_char_idx": 17575, "end_char_idx": 22003, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "bb840724-5538-4bde-843e-9b92558941b9": {"__data__": {"id_": "bb840724-5538-4bde-843e-9b92558941b9", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "2d6ca73c-9c31-4a80-a61a-784342cde399", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "cccd0ab64c5b8c37295ddbeecb155d1f596d6ede1ac99e50dc48954fee6939bc", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "36c5414e-a0bb-4b38-a3c6-a02b39bc9e35", "node_type": "1", "metadata": {}, "hash": "c6fdb1fb4ee31b41beb65572b8343de05d1ee0ad92bf512bba69c64c236f1261", "class_name": "RelatedNodeInfo"}}, "text": "However, many grains have a propensity to columnar rather than equiaxed morphology in the building direction. Therefore, mechanical properties could be anisotropic and it is also important for researchers to be specific about grain dimensions used for analysis. Alloy strengthening can also be improved and tailored by controlling eutectic, precipitation, dispersoids, intermetallic and metastable phases [33].\n\nThe use of $\\mathrm{Al}$ powders in $\\mathrm{PBF}$ is especially promising due to the high thermal conductivity and low specific gravity of $\\mathrm{Al}$, which should allow the fabrication of lightweight and heatcontrollable builds (e.g. heat sinks and heat exchangers). However, most of the current \"printable\" Al alloys are still the relatively low strength near-eutectic AlSiMg-based alloys rather than those based on high-strength wrought alloys [26, 68]. Another class of printable Al is based on $2 \\mathrm{xxx}(\\mathrm{Al}-\\mathrm{Cu})$ with higher Ti, such as $\\mathrm{A} 20 \\mathrm{X}^{\\mathrm{TM}}$ alloy (Al-4.5Cu-0.3Mg-0.7Ag-3.5Ti) developed by Aeromet, 5xxx (Al-Mg) with Sc and Zr such as the Scalmalloy\u00ae (Al-4.5Mg0.6Sc-0.5Mn-0.3 Zr) developed by Airbus Group Innovations [56, 69], and 7xxx (Al-Zn) with higher $\\mathrm{Zr}$ such as Al-7A77 alloy (Al-5.5Zn-1.5Cu-2.5Mg-1.5Zr) developed by HRL laboratory, which was designed specifically for PBF processing.\n\nTo date, research activity in $\\mathrm{AM}$ with $\\mathrm{Al}$ alloys has been restricted versus other alloys. There are a number of factors that complicate the process, including surface oxide formation in the powders, poor powder flowability, low absorptivity of $\\mathrm{Al}$ alloys at the wavelengths of some common laser sources, and high material thermal conductivity [70]. In particular, the combination of high thermal conductivity and low absorptivity requires the application of very high energies to achieve powder melting. However, this can yield uneven vaporisation of alloys where the high vapour pressure alloying elements (e.g. Zn and Mg) preferentially vaporise [2, 26]. This then leads to heterogeneity within the final build.\n\nTable 2 shows the chemical compositions of the Al-alloys most widely used in AM, with their descriptive name. Most of the Sc-containing alloys are not commercially available, and their powders are only available from limited suppliers. Further, typical commercial high-strength wrought alloys (with tensile strengths up to $500 \\mathrm{MPa}$ with good ductility over $10 \\%$ after heattreatment [31]) exhibit poor PBF processability because of hot cracking [68]. Consequently, research into new ways to enhance PBF-processability of these alloys has high significance. Figure 3 summarises the overall tensile properties of conventional Al-alloys and currently tested alloys after L-PBF. This clearly shows that Al-alloys manufactured through L-PBF can achieve a similar tensile strength, but with reduced ductility, a point that will be discussed in detail in a subsequent section.\n\nTable 2 List of selected Al-alloys used in L-PBF and their tensile properties in simple geometry (rectangular) builds. All studies were carried out using locally optimised processing conditions, but not necessarily fully optimised. Further, most recorded an Archimedes density above $99 \\%$. Note that we have omitted literature on wrought alloys that has not exhibited acceptable properties due to defects. For given property ranges, we present only select references.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-11}\n\\end{center}\n\n\\begin{itemize}\n \\item UTS: Ultimate tensile strength; YS: Yield strength at $0.2 \\%$ offset.\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-12}\n\\end{itemize}\n\nFigure 3. Tensile properties of (a) conventional Al-alloys [31] and (b) selected L-PBF Al alloys.", "start_char_idx": 21131, "end_char_idx": 25013, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "36c5414e-a0bb-4b38-a3c6-a02b39bc9e35": {"__data__": {"id_": "36c5414e-a0bb-4b38-a3c6-a02b39bc9e35", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "bb840724-5538-4bde-843e-9b92558941b9", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "774f2000015d6a9e5ef37803044c130ca09ea2c6cff9b87cb40da8005c500f16", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "81a0197c-6637-42df-a7d5-ca885d3d06d8", "node_type": "1", "metadata": {}, "hash": "c46e2f0a881ff96cd9c3ae98065e9059d18c6dcb1034434afa49c2ce3d16eeb4", "class_name": "RelatedNodeInfo"}}, "text": "Further, most recorded an Archimedes density above $99 \\%$. Note that we have omitted literature on wrought alloys that has not exhibited acceptable properties due to defects. For given property ranges, we present only select references.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-11}\n\\end{center}\n\n\\begin{itemize}\n \\item UTS: Ultimate tensile strength; YS: Yield strength at $0.2 \\%$ offset.\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-12}\n\\end{itemize}\n\nFigure 3. Tensile properties of (a) conventional Al-alloys [31] and (b) selected L-PBF Al alloys.\n\n\\section*{3 Al-Si alloy in AM}\nNear-eutectic Al-Si alloys possess outstanding fluidity, high thermal conductivity, low coefficient of thermal expansion (CTE) and excellent castability, therefore the majority of Alalloys used for PBF are hypoeutectic Al-Si (7-12 wt.\\%)-Mg (>1 wt.\\%) alloys. A small number of publications [77, 78, 84] have used hyper-eutectic alloys with higher Si content, made by mixing Al powder with $\\mathrm{Si}$.\n\n\\subsection*{3.1 Microstructure of L-PBF-fabricated Al-Si alloys}\n\\subsection*{3.1.1 Hypoeutectic Al-Si alloy}\nMicrostructural evolution during solidification is a critical factor in determining the final mechanical properties of L-PBF processed parts. The main microstructural features present in L-PBF produced hypoeutectic Al-Si alloys are primary-Al grains and the eutectic Si phase. A common primary-Al grain morphology observed after L-PBF is the epitaxial columnar grain (Figure 4 (a)) [85, 86]. Such columnar grains, which are aligned parallel to the build (vertical) direction, are responsible for the anisotropic mechanical properties observed in AM-made metal parts. Epitaxial columnar grains grow due to partial melting of the previously solidified layer during material deposition and propagate through many successive build layers. This induces a sufficient thermal gradient in the melt pool, along with the release of latent heat preventing fresh nucleation ahead of the solidification front. Electron backscatter diffraction\n\n(EBSD) studies have revealed that these columnar grains exhibit <001> fibre texture [85, 86]. Long columnar grains formed due to directional heat transfer under a steep temperature gradient (arising due to high heating and cooling rates), with the boundaries between them enriched with eutectic liquid during solidification. Wu et al. [85] noted that these long cells forming within columnar grains do not alter their orientation during growth as $\\mathrm{Al}$ within the eutectic deposits and grows on the existing Al cells (Figure 4 (e) and (f)). In their work, the reported columnar grain sizes were a few hundred $\\mu \\mathrm{m}$, with cell sizes of a few $\\mu \\mathrm{m}$. They showed that an epitaxial relationship exists between the eutectic $\\mathrm{Si}$ and $\\mathrm{Al}$ (described as (111)Si|(200)Al). In conventional casting, where cooling rates are less than $10 \\mathrm{~K} / \\mathrm{s}$, Si particles are seen to grow as needle or plate-like structures within the dendritic microstructure of the $\\mathrm{Al}$ grains (with typical <110> growth direction) (Figure 2 (c)). In contrast, under the high cooling rates $\\left(10^{3}-10^{8} \\mathrm{~K} / \\mathrm{s}\\right)$ during L-PBF processing, these alloys form an ultrafine eutectic $\\mathrm{Si}$ microstructure (Figure 4 (c) to (d)), ca. 10-100 nm in size around the cell and grain boundaries (Figure 4 (g) to (h)). The extremely fine cellular microstructure, with ultrafine eutectic microstructure, leads to significant enhancement in the mechanical behaviour of L-PBF processed samples.\n\nOptimised processing parameters should be employed during L-PBF to build components with a fine microstructure and desirable mechanical properties [72, 87].", "start_char_idx": 24376, "end_char_idx": 28205, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "81a0197c-6637-42df-a7d5-ca885d3d06d8": {"__data__": {"id_": "81a0197c-6637-42df-a7d5-ca885d3d06d8", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "36c5414e-a0bb-4b38-a3c6-a02b39bc9e35", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "ae1f6a05fb2be9d943b9b5015d51488959506cd206c523434c99ceabff970202", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "48c48556-bece-4843-a015-37eac49c1a6d", "node_type": "1", "metadata": {}, "hash": "8a1aecfc69a1e724a38e284c2152d6f56ff11fae91eb16ddabb5a12c1365e870", "class_name": "RelatedNodeInfo"}}, "text": "In contrast, under the high cooling rates $\\left(10^{3}-10^{8} \\mathrm{~K} / \\mathrm{s}\\right)$ during L-PBF processing, these alloys form an ultrafine eutectic $\\mathrm{Si}$ microstructure (Figure 4 (c) to (d)), ca. 10-100 nm in size around the cell and grain boundaries (Figure 4 (g) to (h)). The extremely fine cellular microstructure, with ultrafine eutectic microstructure, leads to significant enhancement in the mechanical behaviour of L-PBF processed samples.\n\nOptimised processing parameters should be employed during L-PBF to build components with a fine microstructure and desirable mechanical properties [72, 87]. The eutectic Si microstructure in PBF is controlled by various factors, including kinetics, thermodynamics (i.e. the wettability) and the local concentration of $\\mathrm{Al}$ and $\\mathrm{Si}$ atoms. In $\\mathrm{PBF}$, due to the moving heating source, thermal gradients and growth rates vary within the melt pool, leading to differences in microstructure and texture within the build [88]. Many researchers [86, 88, 89] have explored this, attempting to alter the alloy microstructure by modifying the melt-pool by controlling processing conditions. For example, Thijs et al. [88] hypothesised a solute redistribution effect that is distinctly different from that observed in conventional casting. They observed that Si solubility dramatically increased in the solid-Al because of rapid cooling. Hence, a supersaturated $\\mathrm{Al}$ solid solution, possessing a fine cellular-dendritic structure, forms along with fibrous eutectic $\\mathrm{Si}$ at the cell boundaries. The solute concentration of Si in the liquid $\\mathrm{Al}$ is affected by the rates of cooling and diffusion, which can be controlled by several processing parameters, including laser power and scanning speed. Furthermore, the short irradiation time of the material by the laser, and the formation of liquid oscillations or capillary waves, will also tend to generate a heterogeneous microstructure in the melt pool [90]. Accordingly, various researchers have studied such effects by implementing different scanning strategies to alter the grain structure and improve L-PBF build quality [88, 91, 92].\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-14}\n\nFigure 4. Hypereutectic AlSiMg alloy microstructural features. EBSD image showing (a) primary-Al columnar grain $<001>$ fibre texture in build direction (ZY), (b) primary-Al columnar grain structure in horizontal (XY) direction (reprinted from Ref. [93]). SEM images of (c) ZY and (d) XY, showing a fine eutectic structure (reprinted from Ref. [94]). High magnification micrographs, showing (e) a band contrast image and ( $f$ ) an orientation map, show a similar orientation of cell structures within primary-Al grain. TEM image in (g) and (h) showing fine eutectic Si within the cells, reprint from Ref. [85].\n\n\\subsection*{3.1.2 Hypereutectic Al-Si alloy}\nThe microstructure of hypereutectic Al-Si alloys contains primary Si particles and a eutecticSi needle embedded in primary-Al matrix, with the primary Si particles yielding high strength and wear resistance. In conventional casting, faceted and 'blocky' primary-Si particles form (Figure 2 (c)) leading to low ductility, poor wear performance and low machinability, which greatly restricts their application. These limitations can be addressed by refining primary-Si particles and distributing them uniformly within the $\\mathrm{Al}$ matrix [41]. In $\\mathrm{AM}$, the size of the primary-Si particles is usually $<1 \\mu \\mathrm{m}[78,84,95]$, compared to $25-50 \\mu \\mathrm{m}$ in conventional casting [41], for alloy containing up to 20 wt.\\% Si. Kang et al. [84] showed that in very high Si content Al-50Si alloy, the internal melt pool (close to the laser source) gradually solidified with a lower Si content, whereas the external melt pool produced primary-Si phase with a smaller size due to its higher cooling rate (Figure 5).", "start_char_idx": 27580, "end_char_idx": 31558, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "48c48556-bece-4843-a015-37eac49c1a6d": {"__data__": {"id_": "48c48556-bece-4843-a015-37eac49c1a6d", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "81a0197c-6637-42df-a7d5-ca885d3d06d8", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "7f9424a48698363445b405ff622c4b13204d3a89746b21ac7aa3bc627cda381b", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "4eca146a-b562-4033-8325-3fc7dc1fc342", "node_type": "1", "metadata": {}, "hash": "4c11693bb2354c842bd79138bfb9646f8d0890e6e063c1c9b6e407cf9f1e4dad", "class_name": "RelatedNodeInfo"}}, "text": "These limitations can be addressed by refining primary-Si particles and distributing them uniformly within the $\\mathrm{Al}$ matrix [41]. In $\\mathrm{AM}$, the size of the primary-Si particles is usually $<1 \\mu \\mathrm{m}[78,84,95]$, compared to $25-50 \\mu \\mathrm{m}$ in conventional casting [41], for alloy containing up to 20 wt.\\% Si. Kang et al. [84] showed that in very high Si content Al-50Si alloy, the internal melt pool (close to the laser source) gradually solidified with a lower Si content, whereas the external melt pool produced primary-Si phase with a smaller size due to its higher cooling rate (Figure 5). This is due to the primary-Si phase nucleating from the liquid metal being compelled by the fluid flow (Marangoni convection) to solidify in the external melt pool, which is at a lower temperature during L-PBF. Such microsegregation within the build has a substantial effect on the melt pool temperature and size, which is ultimately a function of the energy input [84]. Furthermore, the scanning speed and other processing parameters significantly influence the hypereutectic microstructure,\\\\\nwhere higher cooling rates during L-PBF result in a displacement of phases, and hypereutectic alloy may form a microstructure resembling hypoeutectic or eutectic alloys [77].\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-15}\n\nFigure 5. L-PBF processed hypereutectic Al-50Si alloy. The melt pool, and primary-Si and eutectic Si distribution within it. Adapted from Ref. [84] with permission from Elsevier.\n\nThe microstructure formed during L-PBF are different between hypo and hyper-eutectic Al-Si alloys. This is mainly due to fraction of phases and differences in primary phase solidification. Primary alpha-Al is the predominant phase in the hypo-eutectic alloys and solidifies with epitaxial and columnar grain structure due to the directional growth under the strong thermal gradient and rapid heat transfer and the minor eutectic is dispersed in the intergranular areas in fine form. On the other hand, considerable eutectic volume exists in the hyper-eutectic alloys where Si nucleates as the primary phase in the form of particulates dispersed in the eutectic liquid. While this avoids columnar grain structure in the hyper-eutectic alloys, the strong thermal gradient and associated fluid flow may lead to inhomogeneous distribution and segregation of the floating Si-particles. Since both the thermal gradient and the rate of cooling affects the solidification condition and fluid flow, laser processing parameters influence the microstructure in both hypo and hyper-eutectic Al-Si alloys despite the difference in their microstructure (and their formation).\n\n\\subsection*{3.2 Defects}\nResearch has revealed that processing parameters have a dramatic influence on the density of AM Al-Si components because of pore formation [87, 96-98]. This is severely detrimental to the final mechanical properties and fracture resistance of built components. It is known that\\\\\nprocessing conditions can be optimised to increase the build density in L-PBF, for example, employing high laser powers and scan speeds combined with low scan spacing. However, much less is known about the effects of material chemistry in the melt pool on final defect formation.\n\nFigure 6 shows various defects observed in AM AlSiMg alloys [26, 99, 100]. The balling phenomenon (Figure 6 (a)) is often observed in L-PBF of metallic material, which yields an irregular scan track and poor inter-line bonding. Further, such balling is a significant hindrance during the deposition of fresh powder on to previously melted layers, causing non-uniformity, porosity and sometimes delamination [101]. Therefore, balling severely degrades material properties and part geometry. Irregularly shaped pore defects are a consequence of incomplete fusion and entrapment of gases in these areas. Here, horizontally-aligned defects are commonly associated with an insufficient input energy density and poor fusion between layers, whereas vertically-aligned defects are associated with large distance between adjacent laser scan paths (hatch distances) leading to insufficient overlap between scan tracks [26, 99].\n\nMoisture in the powder stock can give rise to small gas pores (i.e. below $5 \\mu \\mathrm{m}$ in diameter) (Figure 6 (b)).", "start_char_idx": 30934, "end_char_idx": 35286, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "4eca146a-b562-4033-8325-3fc7dc1fc342": {"__data__": {"id_": "4eca146a-b562-4033-8325-3fc7dc1fc342", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "48c48556-bece-4843-a015-37eac49c1a6d", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "77e52142cbcbc1a78792daea918e142d03dbbb910dc3dde3a479c97dfc32c575", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "82be0d54-cd1f-440e-b6b7-034148371aac", "node_type": "1", "metadata": {}, "hash": "42a2857ccf83a9d5cff3dc04d9e44a981faf52fc21ec18729216fa49a4c51fe5", "class_name": "RelatedNodeInfo"}}, "text": "Further, such balling is a significant hindrance during the deposition of fresh powder on to previously melted layers, causing non-uniformity, porosity and sometimes delamination [101]. Therefore, balling severely degrades material properties and part geometry. Irregularly shaped pore defects are a consequence of incomplete fusion and entrapment of gases in these areas. Here, horizontally-aligned defects are commonly associated with an insufficient input energy density and poor fusion between layers, whereas vertically-aligned defects are associated with large distance between adjacent laser scan paths (hatch distances) leading to insufficient overlap between scan tracks [26, 99].\n\nMoisture in the powder stock can give rise to small gas pores (i.e. below $5 \\mu \\mathrm{m}$ in diameter) (Figure 6 (b)). This is particularly problematic when high energy densities are used. Further, if the moisture reacts with $\\mathrm{Al}$, forming $\\mathrm{Al}_{2} \\mathrm{O}_{3}$, the hydrogen that is released can be absorbed by the melt. This in turn yields hydrogen-rich pores that increase is size as temperature is increased during the build processes. For example, Weingarten et al. [102] reported that of the pores developed in a L-PBF built A1Si10Mg alloy, 96\\% were hydrogen. However, it has been shown that pre-drying of powders can inhibit pore enlargement, for example Yang et al. [103] demonstrated that a 16 -hour $20{ }^{\\circ} \\mathrm{C}$ pre-drying step in the build chamber yielded a significant improvement in build density.\n\nLarge gas pores (> $30 \\mu \\mathrm{m}$ in diameter) are related with the keyhole mode of melting, arising from extreme volumetric energy densities, and observed in various locations when alike processing parameters are used for contour (outer edge defining geometry) and core (inner volume of geometry) scans within a layer. The first location is in the contour scan areas, where low heat dissipation into the powder on one side of the melt pool results in excessive heating. The second location is at the core periphery, where acceleration and deceleration of the laser during the change of scan direction leads to an increased local energy density. Pores at these two locations lead to significantly decreased fatigue performance but can typically be alleviated by modulating the energy input during the contour scan and when turning the laser during the core scan. The third typical position of large pores is at the island scan boundaries, when there is excessive boundary overlap [103]. The optimisation of processing parameters for L-PBF of\\\\\n$\\mathrm{Al}-\\mathrm{Si}$ alloys can yield significant control over the formation of these lack of fusion pore (Figure 6 (c)) defects, allowing the production of dense components, even without the pre-treatment of feedstocks. Generally, near eutectic Al-Si alloys are not sensitive to solidification cracks or hot-cracking, except when Si content is around 1 wt. \\% (Figure 6 (d)) [104]. These cracks form in PBF samples initially through shrinkage porosity and propagate due to residual stresses generated during the build.\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-17}\n\nFigure 6. The different types of defects that form during AM of Al-Si alloys by L-PBF: (a) balling, (b) gas pores, (c) voids or lack of fusion pores and (d) hot cracking (Adapted from Refs. [99, 102, 104, 105] with permission from Elsevier). Note that Al-Si exhibits high sensitivity for hot cracks when Si content is around 1 wt. \\% [104], which is further explained through crack sensitivity graph in Figure 12.\n\n\\subsection*{3.3 Mechanical properties}\n\\subsection*{3.3.1 Effect of microstructure characteristics and processing conditions}\nIt is well established that Si plays an important role in both material castability and the resultant mechanical properties of $\\mathrm{Al}-\\mathrm{Si}$ alloys [33]. In conventionally solidified alloys, the needle or plate-like shapes of the Si phase lead to localised shearing during the early stages of tensile loading and plastic deformation, and quickly to initiation and propagation of cracks, and\\\\\nfracture [106]. However, in L-PBF, the spherical Si nano-sized phase forming at the eutectic regions and in the cells resists local shearing forces.", "start_char_idx": 34474, "end_char_idx": 38771, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "82be0d54-cd1f-440e-b6b7-034148371aac": {"__data__": {"id_": "82be0d54-cd1f-440e-b6b7-034148371aac", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "4eca146a-b562-4033-8325-3fc7dc1fc342", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "9e2590e10ff06b45b27be10e81ad4b7dca4a8d16da3eb8783c5127049f1f6301", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "1a5755ec-1470-4e34-b368-4a45b33c4522", "node_type": "1", "metadata": {}, "hash": "5bbaeb0a673ba21973ee0f33a9ad6756c6430857cf2fe0077f9a1e723e30740e", "class_name": "RelatedNodeInfo"}}, "text": "Note that Al-Si exhibits high sensitivity for hot cracks when Si content is around 1 wt. \\% [104], which is further explained through crack sensitivity graph in Figure 12.\n\n\\subsection*{3.3 Mechanical properties}\n\\subsection*{3.3.1 Effect of microstructure characteristics and processing conditions}\nIt is well established that Si plays an important role in both material castability and the resultant mechanical properties of $\\mathrm{Al}-\\mathrm{Si}$ alloys [33]. In conventionally solidified alloys, the needle or plate-like shapes of the Si phase lead to localised shearing during the early stages of tensile loading and plastic deformation, and quickly to initiation and propagation of cracks, and\\\\\nfracture [106]. However, in L-PBF, the spherical Si nano-sized phase forming at the eutectic regions and in the cells resists local shearing forces. This results in a suppression of crack initiation and propagation and yields an improvement in ductility and strength. The relevant literature suggests that this enhances tensile properties of AM hypoeutectic Al-Si alloys in comparison with conventionally cast material. Furthermore, these high tensile properties of LPBF builds are also contributed by the non-equilibrium solubility of $\\mathrm{Si}$ in the $\\mathrm{Al}$ matrix, in addition to the microstructural refinement of the eutectic Si particles and primary-Al grains. Similar to the hypoeutectic alloys, the strength of hypereutectic alloys also improves through refining primary-Si and eutectic Si phases.\n\nFurthermore, in contrast to conventional casting, Al-Si L-PBF parts show differences in microstructure in the vertical 'build' direction versus the horizontal, leading to anisotropic characteristics [93]. It is not easy to control such isotropic tensile strengths, and anisotropy of ductility, using post-build treatments [87, 97, 107, 108]. In contrast, although anisotropic properties are seen for Al-Si alloys in L-PBF, it is possible to obtain good tensile properties under different fabrication conditions $[109,110]$ and most of the literature has noted that tensile strengths of Al-Si in the two directions are essentially the same [26].\n\nIt has also been observed that changing the scanning strategy, such as varying hatch style and contour, significantly changes the texture [88] and improves tensile properties, which is mainly attributed to altered crack propagation paths [111]. It is noted that L-PBF samples also possess improved toughness, however, this effect is very sensitive to processing parameters such as build and scan direction.\n\nMost researchers have noted that the fatigue properties of L-PBF samples are worse than those of cast samples. The presence of tensile residual stresses, porosity, and unmelted particles have been found to be the likely reasons for this [112]. Further, it has been observed that fracture occurs most commonly in the heat-affected zone (HAZ) at the melt pool boundary. The size of the HAZ is strongly dependent on the L-PBF processing parameters, which yields a ready way of tuning the thermal gradients in the HAZ and melt pool. Specifically, a steeper gradient reduces the size of the HAZ, which is in theory beneficial as it reduces the chance of fracture. Studies on the effect of different environments, such as $\\mathrm{Ar}, \\mathrm{N}_{2}$, and $\\mathrm{He}$, have concluded that $\\mathrm{Ar}$ and $\\mathrm{N}_{2}$ produce samples with superior mechanical properties compared to He (especially ductility). This has been explained by the formation of pore clusters [113].\n\n\\subsection*{3.3.2 Effect of heat treatment}\nThe tensile properties of AlSiMg alloys can be further improved through solution and aging heat treatment. These alloys have varying amounts of $\\mathrm{Mg}$ and $\\mathrm{Cu}$, apart from the $\\mathrm{Si}$, to enhance mechanical properties through precipitation strengthening. Overall, the precipitation mechanism during aging follows the evolution of metastable and stable phases, as studied by Edwards et al [114] and Donlon [115] and others e.g. Ref. [116]. It was found that the precipitation sequence follows: super saturated solid solution (SSSS) $\\rightarrow$ independent clusters of Mg, Si and $\\mathrm{Cu}$ atoms $\\rightarrow$ GP (Guinier-Preston) zones $\\rightarrow$ needle-shaped $\\beta^{\\prime \\prime} \\rightarrow$ rod-shaped $\\beta^{\\prime}$ $\\rightarrow$ plate-shaped $\\beta$.", "start_char_idx": 37918, "end_char_idx": 42307, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "1a5755ec-1470-4e34-b368-4a45b33c4522": {"__data__": {"id_": "1a5755ec-1470-4e34-b368-4a45b33c4522", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "82be0d54-cd1f-440e-b6b7-034148371aac", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "bdf93cfa3f106ecac55673ef77c31d5b5460d49d82ab0b5bb5a1e5314c0ca5a4", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "0c3530d8-e8c5-4150-bedb-e9b50ec5b9f8", "node_type": "1", "metadata": {}, "hash": "64f6465c714c5a479b8948bff139f10589db0163d87a9788db6f7183f61bd1a9", "class_name": "RelatedNodeInfo"}}, "text": "\\subsection*{3.3.2 Effect of heat treatment}\nThe tensile properties of AlSiMg alloys can be further improved through solution and aging heat treatment. These alloys have varying amounts of $\\mathrm{Mg}$ and $\\mathrm{Cu}$, apart from the $\\mathrm{Si}$, to enhance mechanical properties through precipitation strengthening. Overall, the precipitation mechanism during aging follows the evolution of metastable and stable phases, as studied by Edwards et al [114] and Donlon [115] and others e.g. Ref. [116]. It was found that the precipitation sequence follows: super saturated solid solution (SSSS) $\\rightarrow$ independent clusters of Mg, Si and $\\mathrm{Cu}$ atoms $\\rightarrow$ GP (Guinier-Preston) zones $\\rightarrow$ needle-shaped $\\beta^{\\prime \\prime} \\rightarrow$ rod-shaped $\\beta^{\\prime}$ $\\rightarrow$ plate-shaped $\\beta$.\n\nA large amount of research has been conducted on the heat treatment of various $\\mathrm{AM} \\mathrm{Al-Si}$ alloys processed through L-PBF, and on the relationship of between build plate temperatures and the resultant microstructures $[107,117,118]$.\n\nThe thermal environment is also a key parameter in determining the mechanical properties of L-PBF built sample [119, 120]. For example, Siddique et al. [121, 122] studied the mechanical properties of AlSi12 as a function of build rate, base plate pre-heating and post-build heat treatment. Their result showed that these parameters affect microstructure and improve fatigue performance of parts produced through L-PBF. While Buchbinder et al. [110] found that preheating the base plate led to grain coarsening and decreased hardness, for AlSi10Mg, it was actually beneficial in minimising defects in the final microstructure. A heated build plate also enhances adhesion of the part to the platform and reduces residual and thermal stresses.\n\nParticular emphasis is placed on the Si particle morphology at various conditions, as well as the on the evolution of mechanical properties. The most commonly applied heat treatments to these alloys are ASTM - T4, T5, T6, and T7. The size, shape and distribution of the eutectic Si phase have an important influence on the mechanical properties of $\\mathrm{Al}-\\mathrm{Si}$ alloys. Figure 7 shows a schematic of the microstructural evolution of eutectic Si during the annealing treatment [75]. By increasing annealing temperature or time, eutectic Si grows and total number density decreases. It has been shown that spherical Si particles (diameter $<100 \\mathrm{~nm}$ ) form at Al grain boundaries because of the extreme cooling rates encountered during L-PBF [85]. It is thought that this microstructure explains the high tensile ductility (up to $25 \\%$ for the AlSiMg alloy), but that it arises at the expense of yield and ultimate tensile strength. Nevertheless, the microstructure of $\\mathrm{Al}-\\mathrm{Si}$ alloys can be tailored by altering heat treatment procedures.\n\nIn addition, compared to conventional casting, the rapid cooling rate experienced by L-PBFprocessed samples can result in a higher solute supersaturation than the equilibrium\\\\\nmicrostructure, which is known as solute trapping. Rao et al. [117] studied AlSi7Mg0.6 alloy processed through L-PBF, where the initial Si concentration in the Al matrix was $5.4 \\mathrm{wt} . \\%$, and reduced to $0.5 \\mathrm{wt} \\%$ after a 1 hour solution treatment at $535{ }^{\\circ} \\mathrm{C}$. Therefore, the high supersaturation of $\\mathrm{Si}$ and $\\mathrm{Mg}$ in $\\mathrm{Al}$, achieved in L-PBF processed alloys, may allow direct artificial aging. Further, the level of supersaturation is significantly higher than what can be obtained during conventional solution treatment. This can yield higher peak hardness in comparison with that achievable by solution heat-treated L-PBF and casting (Figure 8), therefore we can conclude that standard precipitation strengthening heat treatment is likely not optimal for L-PBF alloys. In fact, a majority of desired microstructures are obtainable through the use of lower temperatures and shorter solution heat treatments than those recommended for ASM T6 [31] (e.g.", "start_char_idx": 41472, "end_char_idx": 45577, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "0c3530d8-e8c5-4150-bedb-e9b50ec5b9f8": {"__data__": {"id_": "0c3530d8-e8c5-4150-bedb-e9b50ec5b9f8", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "1a5755ec-1470-4e34-b368-4a45b33c4522", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "e207e5aea60b1e163dd2e411db8de7e3c500db2281a466b6a016f0a2d0c9bfb2", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "3b806712-5617-4bd3-bdc8-1d89b5751653", "node_type": "1", "metadata": {}, "hash": "3ced947b5c414a3d02998c80680376eba1613b8cfb4af9815f860aa794814a8b", "class_name": "RelatedNodeInfo"}}, "text": "\\%$, and reduced to $0.5 \\mathrm{wt} \\%$ after a 1 hour solution treatment at $535{ }^{\\circ} \\mathrm{C}$. Therefore, the high supersaturation of $\\mathrm{Si}$ and $\\mathrm{Mg}$ in $\\mathrm{Al}$, achieved in L-PBF processed alloys, may allow direct artificial aging. Further, the level of supersaturation is significantly higher than what can be obtained during conventional solution treatment. This can yield higher peak hardness in comparison with that achievable by solution heat-treated L-PBF and casting (Figure 8), therefore we can conclude that standard precipitation strengthening heat treatment is likely not optimal for L-PBF alloys. In fact, a majority of desired microstructures are obtainable through the use of lower temperatures and shorter solution heat treatments than those recommended for ASM T6 [31] (e.g. less than 2 hours at $540{ }^{\\circ} \\mathrm{C}$ [117]).\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-20}\n\nTemperature and Time\n\nFigure 7. Schematic of the microstructural evolution of PBF-processed samples during annealing. Si-rich areas are represented as red. Adapted from Ref. [75] with permission from Elsevier.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-21}\n\\end{center}\n\nFigure 8. Hardness curves for L-PBF-processed A357 alloy, together with cast A357. Reprinted from Ref. [117] with permission from Elsevier.\n\nIn summary, both hypo and hyper-eutectic $\\mathrm{Al}-\\mathrm{Si}$ alloys can be readily processed through $\\mathrm{L}-$ PBF. Due to the rapid solidification of L-PBF-processed samples, the microstructure is significantly refined, which leads to increased strength in comparison with conventional casting. However, ductility and fatigue properties deteriorate, mainly due to residual stresses, porosity, unmelted particles and HAZ. The ductility of L-PBF-processed samples can be improved through appropriate heat treatment, but this is typically at the cost of strength. Therefore, it is vital to keep these advantages and disadvantages of the PBF process in mind when designing parts for real-world applications.\n\n\\section*{4 Wrought Al alloys in AM}\nHigh strength heat-treatable wrought Al-alloys (e.g. 2xxx, 6xxx and 7xxx series) are important in the aerospace and automotive industries [31, 33]. Therefore, in the last five years, these alloys have become appealing candidates for AM. However, many experimental studies have reported difficulties in processing high strength commercial wrought Al-alloys by PBF as they suffer solidification cracking/hot-cracking (Figure 9) [68, 123, 124]. The high volume fractions of high angle grain boundaries (HAGBs) (oriented along the build direction) and the\\\\\nprogressive enrichment of solute alloying elements at these boundaries over successive solidification and re-melting events (Figure 10), along with solid-state diffusion, causes grain boundary segregation-induced hot cracking along the boundaries [89]. Cracking phenomena in these alloys during welding have been attributed to specific characteristics, e.g. differences between solidus and liquidus temperatures, the coefficient of thermal expansion (CTE), solidification shrinkage, and poor fluidity of the molten phase [125, 126]. Further, they have relatively large freezing ranges (Figure 11) in comparison with the near-eutectic AlSiMg alloy (Figure 2 (b)). The combined effect of larger freezing ranges and solidification segregation leads to hot cracking during printing.\n\nIn the welding literature [127, 128], the cracking observed is classified in three categories: (i) during solidification (because of hot tearing), (ii) liquation type cracking (because of segregation of elements at the grain boundary), and (iii) solid-state cracking (because of stresses). This fundamental knowledge gained from conventional manufacturing processes (e.g. casting and welding) can be used to inform the development of AM. For example, it has been established that there is a correlation between the different alloying elements in Al-alloys and susceptibility to weld cracking (Figure 12). Interested readers can find more on the similarities between welding and AM in Ref. [2, 129].", "start_char_idx": 44752, "end_char_idx": 48964, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "3b806712-5617-4bd3-bdc8-1d89b5751653": {"__data__": {"id_": "3b806712-5617-4bd3-bdc8-1d89b5751653", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "0c3530d8-e8c5-4150-bedb-e9b50ec5b9f8", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "a738a32a5d2e794fcfb96f77fefcdd4838616cf31e5ec3f19ef445adeb79fe8a", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "7330391f-03c6-4315-9bd3-b376521f83fd", "node_type": "1", "metadata": {}, "hash": "9c9183b0c6e1895736aa1dd2487614a85764b4002abbb418eb5e68266e9d960f", "class_name": "RelatedNodeInfo"}}, "text": "Further, they have relatively large freezing ranges (Figure 11) in comparison with the near-eutectic AlSiMg alloy (Figure 2 (b)). The combined effect of larger freezing ranges and solidification segregation leads to hot cracking during printing.\n\nIn the welding literature [127, 128], the cracking observed is classified in three categories: (i) during solidification (because of hot tearing), (ii) liquation type cracking (because of segregation of elements at the grain boundary), and (iii) solid-state cracking (because of stresses). This fundamental knowledge gained from conventional manufacturing processes (e.g. casting and welding) can be used to inform the development of AM. For example, it has been established that there is a correlation between the different alloying elements in Al-alloys and susceptibility to weld cracking (Figure 12). Interested readers can find more on the similarities between welding and AM in Ref. [2, 129].\n\nAdditionally, high strength $\\mathrm{Al}$ alloys typically contain volatile elements (e.g. Zn, Mg, Li), which can result in an altered microstructure due to evaporation during L-PBF. It has been observed that, in certain instances [130], changes in the composition because of evaporation of certain alloying elements might even increase cracking susceptibility. In the following section, an overview of results, and some of the promising new research on high strength Al-alloys with respect to their microstructure are provided.\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-23(1)}\n\n\\begin{itemize}\n \\item High angle grain boundaries (HAGBs)\n\\end{itemize}\n\nFigure 9. 2024 high strength Al alloy manufactured through L-PBF, showing hot cracking on some high angle grain boundaries (HAGB) [124].\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-23}\n\nFigure 10. 2024 (Al-Cu) as printed microstructure shows strong segregation of Cu at the grain boundaries and crack initiation in these regions [124].\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-24}\n\nFigure 11. Thermo calc generated phase fraction evolution for (a) 2024: Al-4.35Cu-1.50Mg0.25Fe-0.60Mn-0.08Ti-0.05Cr (2xxx) alloy, (b) Scalmalloy $\\mathbb{2}$ : Al-4.5Mg-0.6Sc-0.5Mn-0.3 Zr (5xxx), (c) 6061: Al-0.9Mg-0.7Si-0.3Cu-0.3Fe-0.1Ti (6xxx) alloy, and (d) 7075: Al-5.5Zn2.5Mg-1.6Cu-0.4Si-0.3Fe-0.2Cu-0.2Ti (7xxx) alloy. High strength $2 x x x$ and $7 x x x$ alloys have long-freezing range ( $>100{ }^{\\circ} \\mathrm{C}$ ) leading to increased hot cracking susceptibility. Phase evolution in 5xxx with $\\mathrm{Sc}$ and $\\mathrm{Zr}$ shows formation of $\\mathrm{Al}_{3} \\mathrm{Sc}_{c}$ and $\\mathrm{Al}_{3} \\mathrm{Zr}$ phases well before the primary-Al, which act as potent nucleation sites for the primary-Al, subsequently eliminating cracking during solidification. 6xxx alloys are highly crack sensitive because they contain approximately 1 wt.\\% $\\mathrm{Mg}_{2} \\mathrm{Si}$, which yields a higher hot cracking susceptibility according to the crack sensitivity curve (Figure 12).\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-25}\n\\end{center}\n\nFigure 12. Effect of chemical composition of weld metal on relative crack susceptibility in various aluminium alloys [131].\n\n\\subsection*{4.1 2xxx (Al-Cu)}\nAl-Cu 2xxx series alloys can be precipitation hardened with high specific strength, good fracture toughness and excellent fatigue properties.", "start_char_idx": 48019, "end_char_idx": 51516, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "7330391f-03c6-4315-9bd3-b376521f83fd": {"__data__": {"id_": "7330391f-03c6-4315-9bd3-b376521f83fd", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "3b806712-5617-4bd3-bdc8-1d89b5751653", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "826254883704ccf6fe95075973bce158c6da4e5f63850c65e94a8e673c23230b", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "2592b19c-69d6-4f0f-b392-3af1656d887d", "node_type": "1", "metadata": {}, "hash": "fd182974bbccf3f3776da2d4440011c63d4f836f23fe1431403aa28389f437dd", "class_name": "RelatedNodeInfo"}}, "text": "6xxx alloys are highly crack sensitive because they contain approximately 1 wt.\\% $\\mathrm{Mg}_{2} \\mathrm{Si}$, which yields a higher hot cracking susceptibility according to the crack sensitivity curve (Figure 12).\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-25}\n\\end{center}\n\nFigure 12. Effect of chemical composition of weld metal on relative crack susceptibility in various aluminium alloys [131].\n\n\\subsection*{4.1 2xxx (Al-Cu)}\nAl-Cu 2xxx series alloys can be precipitation hardened with high specific strength, good fracture toughness and excellent fatigue properties. Commercial 2xxx alloys contain mainly $\\mathrm{Cu}$ and $\\mathrm{Mg}$ elements, with the addition of $\\mathrm{Si}$ and other minor elements such as $\\mathrm{Zn}, \\mathrm{Mn}, \\mathrm{Fe}, \\mathrm{Ti}$, $\\mathrm{V}$. Depending on the composition, an alloy may form up to the five equilibrium precipitate phases, such as $\\theta\\left(\\mathrm{Al}_{2} \\mathrm{Cu}\\right), \\mathrm{S}\\left(\\mathrm{Al}_{2} \\mathrm{Mg}(\\mathrm{Cu}, \\mathrm{Si}, \\mathrm{Zn}), \\mathrm{Si}, \\mathrm{Mg}_{2} \\mathrm{Si}\\right.$ and $\\mathrm{Q}\\left(\\mathrm{Al}_{4} \\mathrm{CuMg}_{6} \\mathrm{Si}_{6}\\right)$. The precipitation sequence of 2xxx alloys in the $\\alpha+\\mathrm{S}$ phase field is [132]: SSSS (super saturated solid solution) $\\rightarrow$ solute clusters $\\rightarrow$ GPB (Guinier-Preston-Bagaryatsky) zones + solute clusters $\\rightarrow$ GPB zones + solute clusters $+\\mathrm{S} \\rightarrow \\mathrm{S}$.\n\nThere have been various attempts to process 2xxx series alloys, such as 2022 (Al-5Cu-0.5Mg), 2024 (Al-4Cu-1Mg), 2219 (Al-6Cu-0.5Mg) and 2618 (Al-2.5Cu-1.5Mg-1Fe-1Ni), by L-PBF [26, 68, 79, 133-137]. During L-PBF, these alloys form columnar primary-Al grains with $<100>$ texture and an extremely fine supersaturated cellular-dendritic structure. Most studies have noted that 2xxx alloys are difficult to process using L-PBF because of their high hot cracking sensitivity during the build process. Karg et al. [138] compared 2022 and 2024 alloys for L-PBF processability and concluded that the 2024 alloy yields a higher density with less susceptibility to pore formation and cracking compared to the 2022 alloy. The authors\\\\\nattributed this to the higher concentration of Si in 2024, which may lead to a decrease in the melt viscosity.\n\nA study on 2024 alloy processed under varied energy densities through modulation of scanning speed and power has been reported by Kumar et al. [124]. They observed that the occurrence of defects (including hot tearing, gas porosities, lack of fusion pores, balling, etc.) could be reduced but not completely eliminated through optimisation of processing conditions (Figure 13). The superheat of the melt pool was observed to be a critical factor in determining the nature of the defects. By providing increased energy input, void formation is reduced. This is because of increased melt fluidity leading to filling of shrinkage voids during solidification, which likely arises as an increased laser power at a given scan speed intensifies the thermal gradient and increases the superheated melt pool volume. However, high input energies increasing the occurrence of hot tearing. Further, the growth of columnar grains, and the liquid film between them ( $\\mathrm{Cu}$ segregation), yields susceptibility to hot cracking along the grain boundaries (Figure 10). Irregular fusion pores or lack of fusion defects can result from insufficient energy input, causing incomplete melting of powder and incomplete filling of the voids and gaps (Rayleigh instability) [139]. This is due to insufficient superheat in the melt pool at low laser power, reducing melt fluidity and causing incomplete filling of shrinkage voids [140].\n\nEnergy density also influences the surface roughness of the build, with a subsequent influence on the mechanical properties.", "start_char_idx": 50896, "end_char_idx": 54791, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "2592b19c-69d6-4f0f-b392-3af1656d887d": {"__data__": {"id_": "2592b19c-69d6-4f0f-b392-3af1656d887d", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "7330391f-03c6-4315-9bd3-b376521f83fd", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "8ba2818d453b0298d11b81347ed2fc662b84ee53c1a033399d91ed92aa816066", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "0c2e4eca-04e0-4228-84f6-8d9540ba34f4", "node_type": "1", "metadata": {}, "hash": "e63f6ae7506991c7137538da2b0385f3a74afcc89094665b99d1e4d2c5406ea8", "class_name": "RelatedNodeInfo"}}, "text": "This is because of increased melt fluidity leading to filling of shrinkage voids during solidification, which likely arises as an increased laser power at a given scan speed intensifies the thermal gradient and increases the superheated melt pool volume. However, high input energies increasing the occurrence of hot tearing. Further, the growth of columnar grains, and the liquid film between them ( $\\mathrm{Cu}$ segregation), yields susceptibility to hot cracking along the grain boundaries (Figure 10). Irregular fusion pores or lack of fusion defects can result from insufficient energy input, causing incomplete melting of powder and incomplete filling of the voids and gaps (Rayleigh instability) [139]. This is due to insufficient superheat in the melt pool at low laser power, reducing melt fluidity and causing incomplete filling of shrinkage voids [140].\n\nEnergy density also influences the surface roughness of the build, with a subsequent influence on the mechanical properties. In the work of Karg et al. [135] on $2219 \\mathrm{Al}$ alloys, samples were fabricated under preheated conditions, at temperatures of $200^{\\circ} \\mathrm{C}$, where a support structure was used between the sample and base plate, in order to alleviate cracking. Here, the possibility of cracking was supressed by controlling and lowering the cooling rate during L-PBF processing, which essentially minimises heat transfer between the base plate and the sample. It was also noted that tensile properties and porosity percentage of the build are highly sensitive to the component geometry. This was attributed to the large cross-sectional area of samples on the base plate, as well as the creation of up to 5 vol.\\% porosity, resulting in poor tensile properties. Koutney et al. [141] studied the 2618 alloy and established a relationship between the relative density and the mechanical properties. It was observed that solidification cracks form when alloys have large freezing range due to stresses. To prevent crack formation, the thermal gradient was reduced through the use of a support structure. Using a heated platform at $400{ }^{\\circ} \\mathrm{C}$, with a lower laser scan speed, did not enhance the sample quality, but instead resulted in gas porosity. Another method used to prevent hot cracking was to increase the Si content in the\\\\\n2xxx alloy, as Si promotes fluidity in the melt. Wang et al. [142] investigated Al-3.5Cu-1.5Mg1Si alloy by adding extra Si powder produced through gas atomisation. Their work allowed fabrication of builds without any hot cracking. Tensile tests carried out on samples after build showed a yield strength of $225 \\mathrm{MPa}$ and an ultimate tensile strength of $370 \\mathrm{MPa}$ (with 5.53\\% elongation). The yield strength and ultimate tensile strength increased to ca. $370 \\mathrm{MPa}$ and ca. $460 \\mathrm{MPa}$, respectively, after T6 heat treatment, but the elongation (at 6.3\\%) did not change significantly. They concluded that the plasticity of the samples is influenced by the formation of a $Q$ phase, and that the $\\mathrm{Mg}_{2} \\mathrm{Si}$ and $\\mathrm{Al}_{\\mathrm{x}} \\mathrm{Mn}_{\\mathrm{y}}$ phases are implicated in this. The formation of these phases resulted in a dimpled fracture surface. The generation of nano- $\\mathrm{Al}_{2} \\mathrm{Cu}(\\mathrm{Mg})$ precipitates in the $\\mathrm{Al}$ matrix after $\\mathrm{T} 6$ heat treatment was shown to offer an increased yield strength and ultimate tensile strength, compared with the as-printed samples. However, Brice et al. [143] observed Mg vaporisation during deposition, which had a significant influence on the precipitation mechanism, and they concluded that the change in $\\mathrm{Mg}$ content led to a significant reduction in $\\mathrm{Al}_{2} \\mathrm{Cu}(\\Omega)$ phase precipitation, resulting in poorer mechanical properties. However, it is equally important to note that adding more Si to high-strength Alalloy degrades mechanical properties, and that the constitution of the alloy may not be suitable for structural applications. Therefore, the aim is not only to manufacture crack free components, but also to obtain good strength and ductility. This can be achieved through careful choice of alloying elements and/or potent nucleant particles.\n\nRecently, Tan et al.", "start_char_idx": 53800, "end_char_idx": 58091, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "0c2e4eca-04e0-4228-84f6-8d9540ba34f4": {"__data__": {"id_": "0c2e4eca-04e0-4228-84f6-8d9540ba34f4", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "2592b19c-69d6-4f0f-b392-3af1656d887d", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "30a0f04bfda334cdaa56af5ea33dba10bc3642566fe23ed8cdd9de37828ec2e1", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "28ce0338-5e29-40c8-a713-cb86d5d79fc8", "node_type": "1", "metadata": {}, "hash": "dfa34113fa1a95d120641b50a202357aee3cb5993574a1f9ce8abf9b704dd716", "class_name": "RelatedNodeInfo"}}, "text": "However, Brice et al. [143] observed Mg vaporisation during deposition, which had a significant influence on the precipitation mechanism, and they concluded that the change in $\\mathrm{Mg}$ content led to a significant reduction in $\\mathrm{Al}_{2} \\mathrm{Cu}(\\Omega)$ phase precipitation, resulting in poorer mechanical properties. However, it is equally important to note that adding more Si to high-strength Alalloy degrades mechanical properties, and that the constitution of the alloy may not be suitable for structural applications. Therefore, the aim is not only to manufacture crack free components, but also to obtain good strength and ductility. This can be achieved through careful choice of alloying elements and/or potent nucleant particles.\n\nRecently, Tan et al. [79] studied a 2024 alloy with the addition of 0.7 wt.\\% Ti nanoparticles to supress hot cracking and refine primary-Al grains. They demonstrated the formation of in situ $\\mathrm{Al}_{3} \\mathrm{Ti}$ nanoparticles with an $\\mathrm{L} 1_{2}$ ordered structure. After $\\mathrm{T} 6$ heat treatment, these samples showed a tensile strength of $435 \\mathrm{MPa}$ with $10 \\%$ elongation, which is comparable to conventionally manufactured wrought samples. Aeromet have developed the A20X ${ }^{\\mathrm{TM}}$ alloys (Al-4.5Cu-0.3Mg-0.7 Ag-3.5Ti) containing approximately $4.5 \\mathrm{wt} \\% \\mathrm{TiB}_{2}$ particles, which show good mechanical properties. Furthermore, Wang et al. [144] have studied Al-Cu alloy with varying amounts of $\\mathrm{Cu}$, noting that $\\mathrm{Al}-33 \\mathrm{Cu}$ alloy, after $\\mathrm{L}-\\mathrm{PBF}$ processing, is seen to develop a nano-eutectic microstructure with a high compressive strength (> $1000 \\mathrm{MPa}$ ).\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-28}\n\nFigure 13. SEM micrographs showing various defects formed in the L-PBF processed 2024 alloy samples [124].\n\n\\section*{$4.25 \\mathbf{x x x}(\\mathrm{Al}-\\mathbf{M g})$}\nAl-Mg-based 5xxx series alloys are not heat-treatable, however they do exhibit solid solution strengthening, strain hardening, with excellent corrosion resistance and weldability [33, 145]. Therefore, they are widely used in automotive applications, such as door assemblies. Conventionally manufactured 5xxx alloys have only moderate strength in comparison with the high-strength 2xxx, 6xxx, and 7xxx series alloys. L-PBF of Al-Mg alloy is mostly investigated with the addition of Sc and/or Zr, as small additions of these elements have shown to markedly improve relative density (up to 99.2-99.9\\%), yield a good combination of tensile strength and ductility, and improve overall processability [56, 69, 120, 146-149]. These elements play a dual role. Firstly, the $\\mathrm{Al}_{3} \\mathrm{Sc}$ and $\\mathrm{Al}_{3} \\mathrm{Zr}$ ( $\\mathrm{L}_{2}$ crystal structure) particles forming during solidification act as heterogeneous nucleation sites to refine the primary-Al grains, which subsequently enhances mechanical properties (Hall-Petch strengthening). This also prevents columnar grain growth that is responsible for hot cracking, which is a problem for a majority of the existing high strength Al-alloys. Secondly, the $\\mathrm{Al}_{3} \\mathrm{Sc}$ and $\\mathrm{Al}_{3} \\mathrm{Zr}$ nano-precipitates formed during the stress-relieving treatment $\\left(275-325^{\\circ} \\mathrm{C}\\right)$ promotes thermal stability of the fine grain structure during subsequent heating $\\left(150-200{ }^{\\circ} \\mathrm{C}\\right)$. This is because of the slow coarsening kinetics of $\\mathrm{Al}_{3} \\mathrm{Sc}$ and $\\mathrm{Al}_{3} \\mathrm{Zr}$, originating from the poor diffusivity of $\\mathrm{Sc}$ and $\\mathrm{Zr}$ in $\\mathrm{Al}$.", "start_char_idx": 57314, "end_char_idx": 61024, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "28ce0338-5e29-40c8-a713-cb86d5d79fc8": {"__data__": {"id_": "28ce0338-5e29-40c8-a713-cb86d5d79fc8", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "0c2e4eca-04e0-4228-84f6-8d9540ba34f4", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "b949361a5b2c8bda41f0872b36a4b94a246163e3115d09d191b19090f31bdde4", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "c832828b-552e-472e-82ad-f3ff4448f72e", "node_type": "1", "metadata": {}, "hash": "4f7f2eb8f3e8e2c1257e1f17f6f25c4b6e37a73344c453d7779a58dbf666b1af", "class_name": "RelatedNodeInfo"}}, "text": "This also prevents columnar grain growth that is responsible for hot cracking, which is a problem for a majority of the existing high strength Al-alloys. Secondly, the $\\mathrm{Al}_{3} \\mathrm{Sc}$ and $\\mathrm{Al}_{3} \\mathrm{Zr}$ nano-precipitates formed during the stress-relieving treatment $\\left(275-325^{\\circ} \\mathrm{C}\\right)$ promotes thermal stability of the fine grain structure during subsequent heating $\\left(150-200{ }^{\\circ} \\mathrm{C}\\right)$. This is because of the slow coarsening kinetics of $\\mathrm{Al}_{3} \\mathrm{Sc}$ and $\\mathrm{Al}_{3} \\mathrm{Zr}$, originating from the poor diffusivity of $\\mathrm{Sc}$ and $\\mathrm{Zr}$ in $\\mathrm{Al}$. Further, heat treatment of Sc-based alloys is basically well-matched with the broad stress-relieving treatment\\\\\nof L-PBF fabricated Al alloys. Such heat treatment is a vital step before the removal of build parts from the platform, as it avoids cracking and/or deformation. This provides an additional benefit and is attractive for commercial manufacturing. Due to the advantages described here, there appears to be great promise in the development of high strength and heat-treatable Sc-Al alloys.\n\nSchmidtke et al. [56] demonstrated the advantage of Sc alloying in combination with Zr, with a composition of Al-4.5Mg-0.66Sc-0.51Mn-0.37 Zr, for L-PBF processed AM. This alloy, also known as Scalmalloy ${ }^{\\circledR}$, was the first Al-alloy to be specifically developed for AM by the Airbus Group. Currently, Scalmalloy\u00ae is the strongest Al alloy used to consistently produce AM components of high quality, with a yield strength of $470 \\mathrm{MPa}$, a tensile strength of 520 $\\mathrm{MPa}$, and 13\\% breaking elongation. Research has indicated that the precipitation of $\\mathrm{Al}_{3} \\mathrm{Sc}$ leads to increased strength, with increments of ca. $40-50 \\mathrm{MPa}$ per $0.1 \\mathrm{wt} \\%$ of Sc content. Li et al. [125][150] studied the alloy Al-xMg-Sc-Zr by varying Mg content from 1.5 to 6 wt.\\%, with a reduced amount of Sc compared to Scalmalloy ${ }^{\\circledR}$. The objective of the study was to reduce the amount of expensive Sc, whilst achieving a similar performance. However, a microstructural study revealed that hot cracking was apparent when Mg content was increased. Hot cracking was only reduced when 1.3 wt.\\% Si was added, which yielded refined $\\mathrm{Al}-\\mathrm{Mg}_{2} \\mathrm{Si}$ interdendritic eutectic structures. The microstructures consisted of ultra-fine solidification cells with diameters of 300-600 nm, with $\\mathrm{Al}_{3}(\\mathrm{Sc}, \\mathrm{Zr})$ nanoparticles 2-15 nm embedded inside the cells. The intergranular $\\mathrm{Al}-\\mathrm{Mg}_{2} \\mathrm{Si}$ eutectic, with $\\mathrm{Mg}_{2} \\mathrm{Si}$ diameters of ca. $10-100 \\mathrm{~nm}$, was present in the cell or columnar sub-grain boundary. The tensile strength of the as-printed alloy was between 500-550 MPa, with an approximate elongation of 8-11\\%, which was dependent on heat treatment aging process. Croteau et al. [146] studied two ternary alloys (Al-3.60Mg1.18Zr and $\\mathrm{Al}-3.66 \\mathrm{Mg}-1.57 \\mathrm{Zr}$ ), intending to reduce cost by eliminating Sc while achieving equivalent grain refinement. The as-printed microstructure showed two types of grain: interconnected bands of fine (ca. $0.8 \\mu \\mathrm{m}$ ), equiaxed, isotropic grains, and coarser (ca. 1$10 \\mu \\mathrm{m})$, columnar, textured grains.", "start_char_idx": 60354, "end_char_idx": 63759, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "c832828b-552e-472e-82ad-f3ff4448f72e": {"__data__": {"id_": "c832828b-552e-472e-82ad-f3ff4448f72e", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "28ce0338-5e29-40c8-a713-cb86d5d79fc8", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "79d2e17d98a33435a15116afc6628b3bffdef4258cf1a1d7847c6ce3c7339a86", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "c79760a7-e752-4787-b5a7-24db5e2f76d8", "node_type": "1", "metadata": {}, "hash": "774f4d213f97ccd463889a95f1752b085ce9b0bdfcd76c530485f6ef6b258332", "class_name": "RelatedNodeInfo"}}, "text": "$10-100 \\mathrm{~nm}$, was present in the cell or columnar sub-grain boundary. The tensile strength of the as-printed alloy was between 500-550 MPa, with an approximate elongation of 8-11\\%, which was dependent on heat treatment aging process. Croteau et al. [146] studied two ternary alloys (Al-3.60Mg1.18Zr and $\\mathrm{Al}-3.66 \\mathrm{Mg}-1.57 \\mathrm{Zr}$ ), intending to reduce cost by eliminating Sc while achieving equivalent grain refinement. The as-printed microstructure showed two types of grain: interconnected bands of fine (ca. $0.8 \\mu \\mathrm{m}$ ), equiaxed, isotropic grains, and coarser (ca. 1$10 \\mu \\mathrm{m})$, columnar, textured grains. Both grain structures contained oxide particles and $\\mathrm{Al}_{3} \\mathrm{Zr}$ precipitates, providing a mixture of high yield strength $(354 \\mathrm{MPa})$, ultimate tensile strength (380 MPa) and ductility (ca. 20\\%), with isotropic properties in both as-built and peak-aged samples.\n\n\\section*{$4.3 \\mathbf{6 x x x}(\\mathrm{Al}-\\mathrm{Mg}-\\mathrm{Si})$}\nHeat treatable wrought 6xxx (Al-Mg-Si) Al-alloys exhibit moderate high strength (>300 MPa) with excellent corrosion resistance and extrudability, making them attractive for structural and automotive applications [31, 53, 151]. The basic precipitation sequence for the 6xxx series (in $\\mathrm{Cu}$ free) alloys is [114, 152]: SSSS (super saturated solid solution) $\\rightarrow$ solute clusters $\\rightarrow$ GPB zones $\\rightarrow$ metastable $\\beta^{\\prime \\prime} \\rightarrow$ metastable $\\beta^{\\prime} \\rightarrow$ stable $\\beta\\left(\\mathrm{Mg}_{2} \\mathrm{Si}\\right)$. However, the susceptibility of Al$\\mathrm{Mg}$-Si alloys to hot cracking is well known in the welding literature, and more recently in the context of laser welding. Similar to welding, L-PBF processing of crack-free builds has seen only limited success in the reported literature. The 6061 (Al-1Mg-1Si) alloy is widely studied due to its frequent use in automotive applications in the form of rolled and extruded profiles. Fulcher et al. [153] studied AA6061 alloy and compared it with printable AlSi10Mg. Their systematic experimental work concluded that hot cracking occurs in AA6061 alloy mainly due to the higher coefficient of thermal expansion (CTE) and a large freezing range. Other researchers [154-157] have also observed cracking in multiple grains and identified oxide film on grain boundaries as the major contributor to this phenomena. Researchers argue that the stable $\\mathrm{Al}$ oxide films have a higher melting point than the $\\mathrm{Al}$, and during the $\\mathrm{L}-\\mathrm{PBF}$ processing these oxide film segregate in the melt pool boundary, subsequently forming cracks. In order to improve processability of this alloy, several strategies have been explored. Robert et al. [98] prepared AA6061 alloy by mixing Al and Si powder, and their work demonstrated a reduction in hot cracking. However, mixing powders generates a slightly different chemical composition in comparison with the commercial AA6061 alloy. Martin et al. [73] studied AA 6061 alloy with addition of a grain refiner, using $\\mathrm{Zr}$ nanoparticles to reduce hot cracking in L-PBF. Their results shown that altering primary Al-grain morphology from columnar to equiaxed ( $\\sim 5 \\mu \\mathrm{m}$ in size) completely eliminate hot cracking. The $\\mathrm{Zr}$ nanoparticles react with $\\mathrm{Al}$ and form $\\mathrm{Al}_{3} \\mathrm{Zr}$ particles, which act as nucleation sites for primary-Al grains, as explained in Section 5. Another approach that researchers have explored is heating the base plate up to $500{ }^{\\circ} \\mathrm{C}$, which reduces residual stress during the build and supresses hot cracking [82]. After T6 heat treatment, crackfree builds were obtained with a tensile strength of ca. $310 \\mathrm{MPa}$ and an elongation of 3.5\\%.", "start_char_idx": 63098, "end_char_idx": 66940, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "c79760a7-e752-4787-b5a7-24db5e2f76d8": {"__data__": {"id_": "c79760a7-e752-4787-b5a7-24db5e2f76d8", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "c832828b-552e-472e-82ad-f3ff4448f72e", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "72aa2fefab3bb4fcf8fe17b0d6eef12152dd27a13a823c5d2133a8246068a9a0", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "abd3a2a7-00b9-4afe-83f5-dfae36ab32f6", "node_type": "1", "metadata": {}, "hash": "a76c85130e6dbfc15e615f3ebd0831fb18352f1ca61eba9a14f7efba7bee1e2e", "class_name": "RelatedNodeInfo"}}, "text": "Their results shown that altering primary Al-grain morphology from columnar to equiaxed ( $\\sim 5 \\mu \\mathrm{m}$ in size) completely eliminate hot cracking. The $\\mathrm{Zr}$ nanoparticles react with $\\mathrm{Al}$ and form $\\mathrm{Al}_{3} \\mathrm{Zr}$ particles, which act as nucleation sites for primary-Al grains, as explained in Section 5. Another approach that researchers have explored is heating the base plate up to $500{ }^{\\circ} \\mathrm{C}$, which reduces residual stress during the build and supresses hot cracking [82]. After T6 heat treatment, crackfree builds were obtained with a tensile strength of ca. $310 \\mathrm{MPa}$ and an elongation of 3.5\\%. This is comparable with parts produced by conventional processing, but with a reduced ductility.\n\n\\section*{4.4 $7 \\mathbf{x x x}(\\mathrm{Al}-\\mathrm{Zn})$}\nThe Al-Zn-based 7xxx alloy series is known for excellent mechanical properties, and is widely used in aerospace applications. The basic precipitation sequence for 7xxx series alloys is [158]: SSSS (super saturated solid solution) $\\rightarrow$ solute clusters $\\rightarrow$ GPB zones $\\rightarrow$ metastable $\\eta^{\\prime} \\rightarrow$ stable $\\eta\\left(\\mathrm{MgZn}_{2}\\right)$. However, as with the $2 \\mathrm{xxx}$ and $6 \\mathrm{xxx}$ series alloys, $7 \\mathrm{xxx}$ has hot cracking problems during the L-PBF process. Several studies have looked at the influence of processing conditions on the formation of defects in L-PBF parts using 7075 (Al-5Zn-1.5Cu$2.5 \\mathrm{Mg}$ ) (or analogous) alloy. Si addition can prevent the formation of microcracks in 7075 alloy builds fabricated by L-PBF. For example, Sistiaga et al. [159] observed that mixing 7075 powder with 4 wt.\\% silicon particles eliminated microcrack formation (Figure $16(\\mathbf{o}, \\mathbf{p})$ ). The authors attributed the improved processability to a reduced viscosity of the melt pool due to the addition of Si. They also observed a new eutectic phase and strong grain refining effect preventing the formation and propagation of cracks. Aversa et al. [160] studied 7075 alloy mixed with printable AlSi10Mg alloy (50:50), and Otani et al. [161, 162] studied 7075 alloy with 5 wt.\\% additional Si. Their results also confirmed that addition of Si eliminates hot cracking and forms fine primary-Al grains. However, mixing two or more powders could cause an inhomogeneous element distribution, yielding anisotropic mechanical properties within the build parts. Otani and Sasaki [162] studied pre-alloyed 7075 with up to 16 wt.\\% Si to elucidate the effect of Si on processing, microstructure formation and mechanical properties. Their result showed that, under optimal processing conditions, defects such as voids and hot cracking were reduced, and the relative density increased, with increasing Si content. Addition of 5 wt. \\% Si completely eliminated hot cracking, and achieved 360 MPa YS and 537 MPa UTS with 9.7\\% elongation to failure. However, they observed that large additions of Si increased brittleness. This system will likely be useful for building lightweight components by L-PBF, therefore further study of Si addition in this system could yield breakthroughs in the field.\n\nAnother approach that has been proposed is the addition of $\\mathrm{Zr}$ or Sc. These behave as intermetallic forming elements in $\\mathrm{Al}$ alloys. For example, Martin et al. [73] demonstrated that the use of hydrogen-stabilised Zr nanoparticles in 7075 alloy powder leads to the formation of well-dispersed $\\mathrm{Al}_{3} \\mathrm{Zr}$ intermetallics. Then, during solidification, these would act as nucleation sites for primary Al, yielding finely equiaxed grains that suppress microcrack formation. The observed mechanical properties after T6 heat treatment were 325-373 MPa YS, 383-417 MPa UTS with 3.8-5.4\\% elongation to failure, which is close to conventionally produced 7075 alloy. Qi et al.", "start_char_idx": 66273, "end_char_idx": 70165, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "abd3a2a7-00b9-4afe-83f5-dfae36ab32f6": {"__data__": {"id_": "abd3a2a7-00b9-4afe-83f5-dfae36ab32f6", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "c79760a7-e752-4787-b5a7-24db5e2f76d8", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "39fb24f67b4aeaad9fb203db7d097348b01c0cf2e47ba2b1ac2be6f7d19d19bc", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "2a0fcb8c-991c-4bc0-9be5-4643900f4bd5", "node_type": "1", "metadata": {}, "hash": "66b3ab38cdc82207399e067909bd36522d1ec7c122ec8ca406066c310a56409f", "class_name": "RelatedNodeInfo"}}, "text": "Another approach that has been proposed is the addition of $\\mathrm{Zr}$ or Sc. These behave as intermetallic forming elements in $\\mathrm{Al}$ alloys. For example, Martin et al. [73] demonstrated that the use of hydrogen-stabilised Zr nanoparticles in 7075 alloy powder leads to the formation of well-dispersed $\\mathrm{Al}_{3} \\mathrm{Zr}$ intermetallics. Then, during solidification, these would act as nucleation sites for primary Al, yielding finely equiaxed grains that suppress microcrack formation. The observed mechanical properties after T6 heat treatment were 325-373 MPa YS, 383-417 MPa UTS with 3.8-5.4\\% elongation to failure, which is close to conventionally produced 7075 alloy. Qi et al. [163] have studied 7050 alloy by altering three types of melt pool: goblet,\\\\\nsemicircle, and a combination of the two. The shapes are similar to the shape of keyhole, conduction, and transition modes. Their experimental results demonstrated that under the keyhole mode, the number of cracks are reduced because of the changing thermal gradient and growth rate from the melt pool boundary to the centre of the melt pool. It is also worth remembering that increasing the heat input by altering processing conditions has several disadvantages, such as evaporation of alloying elements like Zn, which can lead to chemical heterogeneities within the build. This changing melt pool strategy is equally applicable to other alloy systems. Mauduit et al. [130] studied the change in chemical composition of 7075 alloy before and after build, and noted that $\\mathrm{Zn}$ wt.\\% reduced from 5.8 to 3.9 wt.\\% and $\\mathrm{Mg}$ from 2.6 to $2.1 \\mathrm{wt}$ \\%. Loss of $\\mathrm{Zn}$ and Mg could lead to a deterioration in the mechanical properties of the 7075 alloy as these alloying elements stimulate solid solution strengthening and precipitation hardening from the $\\mathrm{MgZn}_{2}$ phase. Further, Kaufmann et al. [164] studied 7075 alloy by preheating the base plate at $200{ }^{\\circ} \\mathrm{C}$, however their results did not show a significant reduction in hot cracking.\n\n\\section*{5 Grain refinement in additive manufacturing}\nA significant challenge in $\\mathrm{AM}$ is to prevent columnar primary- $\\mathrm{Al}$ grain structure formation during solidification. The AM process sees high thermal gradients and high cooling rates, which typically yield directional growth, and partial re-melting of previously deposited material, leading to epitaxial growth of columnar grains. Intergranular hot tearing can occur due to weaknesses arising from long solute-rich liquid channels between these grains due to thermal stress and solidification shrinkage [123]. Columnar grains also yield anisotropy in mechanical properties, which is typically undesirable [2]. A more desirable outcome is a homogeneous, fine, equiaxed grain structure which yields structures with isotropic mechanical properties that can resist hot tearing [165]. However, it is difficult to alter the build grain structure of AM components in contrast with conventionally-manufactured high-strength Alalloys, where solidified grain structure can be rectified by subsequent thermo-mechanical processing improving the overall properties of these alloys [166]. Accordingly, in AM the best approach is to induce the formation of desired equiaxed grains during solidification, which can be achieving through modulation of the thermal gradient and solidification speed (Figure 14) $[62,63,68]$.\n\nIn the literature, development of fine equiaxed grain structure has been demonstrated through: (i) addition of a grain refiner (e.g. $\\mathrm{TiB}_{2}$ [167], $\\mathrm{NiB}$ [34]) and solute (e.g. Ti) [168], (ii)\\\\\napplication of physical force (e.g. ultrasonication [42], electromagnetic stirring [47]), and (iii) alteration of solidification conditions (e.g. cooling rate) [50, 51].\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-33}\n\\end{center}\n\nFigure 14. The effect of temperature gradient and growth rate (i.e. interface velocity) on grain size and morphology.", "start_char_idx": 69461, "end_char_idx": 73531, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "2a0fcb8c-991c-4bc0-9be5-4643900f4bd5": {"__data__": {"id_": "2a0fcb8c-991c-4bc0-9be5-4643900f4bd5", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "abd3a2a7-00b9-4afe-83f5-dfae36ab32f6", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "a310fc8a8440e987336809e7f5e230eab2eefd7dcfe47ae38075e4bd473b2e6c", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "f79ca2b0-3439-4842-8e57-367d07a9c2d7", "node_type": "1", "metadata": {}, "hash": "439373a63acf8d6e2d13097235c5f1c13b4c0af8a1671bc750d671b6b57d8f4d", "class_name": "RelatedNodeInfo"}}, "text": "In the literature, development of fine equiaxed grain structure has been demonstrated through: (i) addition of a grain refiner (e.g. $\\mathrm{TiB}_{2}$ [167], $\\mathrm{NiB}$ [34]) and solute (e.g. Ti) [168], (ii)\\\\\napplication of physical force (e.g. ultrasonication [42], electromagnetic stirring [47]), and (iii) alteration of solidification conditions (e.g. cooling rate) [50, 51].\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-33}\n\\end{center}\n\nFigure 14. The effect of temperature gradient and growth rate (i.e. interface velocity) on grain size and morphology. S and L stand for solid and liquid, respectively [62, 63].\n\n\\subsection*{5.1 Grain refinement by inoculant particles and solute elements}\nThe most common grain refining approach in conventional casting is to add trace amounts of solute and inoculants without affecting the original alloy chemistry. In 1952, Turnbull and Vonnegut [169] proposed the grain refining potency of nucleant agents through lattice disregistry. Subsequently, several experimental and mathematical models were developed to determine suitable nucleant particles for the grain refining of Al-Alloys. For example, the 'free growth model' [170] has been frequently employed to analyse the potency of nucleant particles. Similarly, in 1954, Winegard and Chalmers [171] suggested a new columnar to equiaxed transition (CET) theory, which describes the addition of inoculant agents or addition of solutes and manipulation of solidification parameters. In that direction, significant research activity has focused specifically on $\\mathrm{Al}$ and $\\mathrm{Mg}$ alloys. Some solute elements have an effective growth restricting factor $\\left(Q=m C_{0}(k-1)\\right.$ ), where $m$ is the slope of the liquidus line, $C_{0}$ is the solute\\\\\nconcentration in the bulk alloy, and $k$ is the partition coefficient) [168]. Based on experimental results, it was observed that size and morphology of the grain is directly related to the solute present in the alloys. The StJohn group's extensive work concluded that, for constitutional supercooling to commence, it is vital for potential nucleant particles to instigate waves of heterogeneous nucleation well before the solid growth front during solidification [68, 172]. When there is a larger $Q$, supercooled zones develop before the solidification front [173]. Nucleation commences in these supercooled zones, since nucleant particles with low critical undercooling are present. The particles in these zones have coherent crystallographic matching with the matrix grains. Figure 15 illustrates the $Q$ value versus the grain size of $\\mathrm{Al}$ alloys that have been conventionally cast [174]. When there is a difference in solidification conditions between conventional casting and metal AM, there will be a strong effect on the solutes and inoculant agents in promoting heterogeneous nucleation. This information can be used in metal AM in order to promote CET, where parameters such as $G$ and $R$ are controlled. The development of the various grain morphologies during solidification are shown in Figure 14. Recently in AM research [68, 73, 79, 175], the addition of solutes and inoculants has been implemented in metal AM in order to achieve equiaxed microstructures, minimising the effect of hot tearing. The objective is to introduce nucleants as either externally added particles, or by the formation of intermetallics from previously melted layers, which act as nucleation sites during subsequent solidification, or by adding high $Q$-value elements to generate constitutional supercooling for nucleation ahead of the solid-liquid interface.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-35}\n\\end{center}\n\nFigure 15. Primary Al grain size versus growth restriction Factor $(Q)$, with varying alloying elements. Adapted from Ref. [174] with permission from Elsevier.", "start_char_idx": 72923, "end_char_idx": 76861, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "f79ca2b0-3439-4842-8e57-367d07a9c2d7": {"__data__": {"id_": "f79ca2b0-3439-4842-8e57-367d07a9c2d7", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "2a0fcb8c-991c-4bc0-9be5-4643900f4bd5", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "a919eb8da617b7765c9cb1dd0e74e7cf189a4b13be25b1f15c1111b2845ae1f4", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "ac95bbc2-1f8f-4aee-9b77-27dbb16f6bbb", "node_type": "1", "metadata": {}, "hash": "6b430a3271cebe0c5c3206232ce428caf24329ff63dcfd710ffed498420da996", "class_name": "RelatedNodeInfo"}}, "text": "Recently in AM research [68, 73, 79, 175], the addition of solutes and inoculants has been implemented in metal AM in order to achieve equiaxed microstructures, minimising the effect of hot tearing. The objective is to introduce nucleants as either externally added particles, or by the formation of intermetallics from previously melted layers, which act as nucleation sites during subsequent solidification, or by adding high $Q$-value elements to generate constitutional supercooling for nucleation ahead of the solid-liquid interface.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-35}\n\\end{center}\n\nFigure 15. Primary Al grain size versus growth restriction Factor $(Q)$, with varying alloying elements. Adapted from Ref. [174] with permission from Elsevier.\n\n\\subsection*{5.1.1 Addition of $\\mathrm{TiB}_{2}$ and solute $\\mathrm{Ti}$}\nIn the last three years, many researchers have added commonly used primary-Al grain refiners, for example Al-Ti-B master alloy, which usually have a $\\mathrm{Ti}$ content above the $\\mathrm{TiB}_{2}$ stoichiometric ratio of 2.2:1 (wt.\\%) [167, 174, 176]. Therefore, this grain refiner provides $\\mathrm{TiB}_{2}$ inoculant particles as well as Ti solute, which has a comparatively high $Q$ value in $\\mathrm{Al}$ alloys. $\\mathrm{TiB}_{2}$ inoculant particles, when reacting with liquid $\\mathrm{Al}$, form a more stable $\\mathrm{Al}_{3} \\mathrm{Ti}$ layer on $\\mathrm{TiB}_{2}$, which can act as a nucleation site for primary-Al grains. The inoculant Al-Ti-B refiners achieve grain refinement in castings (transforming $\\mathrm{mm}$ size grains to hundreds of microns in size), therefore they are also added to AM metals to achieve the same effect. Effective grain refinement of AlSi10Mg processed by L-PBF was achieved by dispersion of nanoscale $\\mathrm{TiB}_{2}$ (5.6 wt.\\%) in the coating powder, as shown in Figure 16 (a, b) [175]. Carluccio et al. [177] studied the addition of $0.33 \\mathrm{wt} \\%$ Al-5Ti-1B grain refiner into Al7Si-6061 alloys, where the alloys were then exposed to laser re-melting, and observed grain refinement for all the scans studied. With a low scan speed, there was a reduction in average grain size from $33 \\mu \\mathrm{m}$ to 5\\\\\n$\\mu \\mathrm{m}$ for 6061 alloy, and from $30 \\mu \\mathrm{m}$ to $10 \\mu \\mathrm{m}$ for Al7Si alloy. Further, Wang et al. [178] used in situ fabrication methods for L-PBF of $\\mathrm{TiB}_{2} / \\mathrm{Al}_{3}$.5Cu1.5MgSi composite incorporating $\\mathrm{TiB}_{2}$ powder particles with a 5 vol.\\%, and noted significant grain refinement from $23 \\mu \\mathrm{m}$ to $2.5 \\mu \\mathrm{m}$. Wen et al. [179] added 3 wt.\\% $\\mathrm{TiB}_{2}$ into the 2024 alloy and achieved equiaxed structures. The grain sizes were refined to $20-35 \\mu \\mathrm{m}$, and the mechanical properties of the components were enhanced, in contrast to columnar structures with length of $60 \\mu \\mathrm{m}$ to $1.6 \\mathrm{~mm}$ without the addition of $\\mathrm{TiB}_{2}$. Tan et al. [79] used Ti nanoparticles in 2024 alloy feedstock powder, which allowed the development of metastable $\\mathrm{L}_{2}-\\mathrm{Al}_{3} \\mathrm{Ti}$. These metastable nanoparticles form because of fast cooling during L-PBF. This process was effective in initiating heterogeneous nucleation of the primary-Al, which resulted in the development of fine equiaxed structures, where the average grain size was measured to ca. $2 \\mu \\mathrm{m}$ (Figure 16 (e, f). Tan et al.", "start_char_idx": 76057, "end_char_idx": 79533, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "ac95bbc2-1f8f-4aee-9b77-27dbb16f6bbb": {"__data__": {"id_": "ac95bbc2-1f8f-4aee-9b77-27dbb16f6bbb", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "f79ca2b0-3439-4842-8e57-367d07a9c2d7", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "f13fd24276c71601204f323cedd359264d860cb37273128d9ada44cdfed9f9cd", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "56f3b1fc-e638-42e0-a2d2-c1b91710efe9", "node_type": "1", "metadata": {}, "hash": "6116a54f57d3a4942eb79c86c6c5adc5d32e00fc503b6c0327d8f13bcfca2b10", "class_name": "RelatedNodeInfo"}}, "text": "The grain sizes were refined to $20-35 \\mu \\mathrm{m}$, and the mechanical properties of the components were enhanced, in contrast to columnar structures with length of $60 \\mu \\mathrm{m}$ to $1.6 \\mathrm{~mm}$ without the addition of $\\mathrm{TiB}_{2}$. Tan et al. [79] used Ti nanoparticles in 2024 alloy feedstock powder, which allowed the development of metastable $\\mathrm{L}_{2}-\\mathrm{Al}_{3} \\mathrm{Ti}$. These metastable nanoparticles form because of fast cooling during L-PBF. This process was effective in initiating heterogeneous nucleation of the primary-Al, which resulted in the development of fine equiaxed structures, where the average grain size was measured to ca. $2 \\mu \\mathrm{m}$ (Figure 16 (e, f). Tan et al. [180, 181] also studied by adding $\\mathrm{LaB}_{6}$ addition up to 2 wt.\\% in the AlSi10Mg alloy (Figure 16 (c, d). Their results showed that $\\mathrm{LaB}_{6}$ nanoparticles act as nucleation sites for primary-Al and refine the microstructure. The addition over $0.5 \\mathrm{wt}$ \\% further reduced grain size, but also reduced ductility due to segregation of an excessive amount of $\\mathrm{LaB}_{6}$ particles on the grain boundaries.\n\n\\subsection*{5.1.2 Addition of $\\mathrm{Zr}$}\nEffective grain refinement has been achieved through the addition of $\\mathrm{Zr}$ due to the formation of $\\mathrm{Al}_{3} \\mathrm{Zr}$ particles through a peritectic reaction, which provides heterogeneous nucleation sites for the primary-Al grains [182]. Compared with Ti, the $Q$ value of $\\mathrm{Zr}$ is lower, however, $\\mathrm{Al}_{3} \\mathrm{Zr}$ particles are still considered effective grain refiners. $\\mathrm{Zr}$ retained in the $\\mathrm{Al}$ solid solution also forms $\\mathrm{Al}_{3} \\mathrm{Zr}$ precipitates during heat treatment, which is beneficial to the mechanical properties of Al-alloys, especially at high temperatures. Zhang et al. [133] studied 2024 (Al-Cu-Mg) alloy with the addition of $2 \\mathrm{wt} \\% \\mathrm{Zr}$, and they achieved elimination of hot cracking by altering the grain morphology Figure 16 (g, h). As printed microstructure exhibited formation of equiaxed grains (1-2 $\\mu \\mathrm{m}$ in size) in the melt pool boundary, and columnar grains growing toward the centre of the melt pool. The tensile properties of this modified microstructure achieved ca. 450 MPa UTS, with low elongation to failure (2.7\\%). This reduction of ductility could be attributes to excessive $\\mathrm{Al}_{3} \\mathrm{Zr}$ intermetallic particle formation. A study by Nie et al. [183] demonstrated that decreasing Zr content from 2 wt.\\% to 0.6 wt.\\% improved ductility of 2024 alloy up to $11 \\%$. However, addition of only $0.6 \\mathrm{wt} \\% \\mathrm{Zr}$ is not sufficient to refine the entire microstructure, and is not capable of eliminating hot cracking in L-PBF. Additionally, it was noted that the amount of equiaxed grains that form in builds depends on the scan speed, where fully equiaxed structures were observed with a scan speed of $5 \\mathrm{~m} / \\mathrm{min}$, but with a scan speed of $15 \\mathrm{~m} / \\mathrm{min}$ a\\\\\nmixed columnar and equiaxed microstructure was observed [133]. Research carried out by Martin et al. [73], where they coated 7075 and 6061 alloy powders with $\\mathrm{ZrH}_{2}$ nanoparticles, showed a transformation from columnar to equiaxed grains Figure $16(\\mathbf{m}, \\mathbf{n})$, where the $\\mathrm{ZrH}_{2}$ nanoparticles chemically reacted with $\\mathrm{Al}$ and formed $\\mathrm{Al}_{3} \\mathrm{Zr}$ particles . These nanoparticles were seen to not only change grain morphology but also to eliminate hot cracking, which was observed without nanoparticles in the build. This crack free build showed UTS of ca.", "start_char_idx": 78799, "end_char_idx": 82494, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "56f3b1fc-e638-42e0-a2d2-c1b91710efe9": {"__data__": {"id_": "56f3b1fc-e638-42e0-a2d2-c1b91710efe9", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "ac95bbc2-1f8f-4aee-9b77-27dbb16f6bbb", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "77d01cc591fca1265494ece1c4f6829f3ae11a2671dd62c44c95015a7eb45c96", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "5d1fa984-43ca-452f-9015-66ab8fe879d7", "node_type": "1", "metadata": {}, "hash": "93a455632d06b59b4491450e2a92ef9b201bb428e1ec234abbd5ca14827e98ee", "class_name": "RelatedNodeInfo"}}, "text": "Research carried out by Martin et al. [73], where they coated 7075 and 6061 alloy powders with $\\mathrm{ZrH}_{2}$ nanoparticles, showed a transformation from columnar to equiaxed grains Figure $16(\\mathbf{m}, \\mathbf{n})$, where the $\\mathrm{ZrH}_{2}$ nanoparticles chemically reacted with $\\mathrm{Al}$ and formed $\\mathrm{Al}_{3} \\mathrm{Zr}$ particles . These nanoparticles were seen to not only change grain morphology but also to eliminate hot cracking, which was observed without nanoparticles in the build. This crack free build showed UTS of ca. $400 \\mathrm{MPa}$ in T6 condition, with a ductility below 6\\%. Research on 5xxx with addition of Zr (Al-Mg-Zr, also called Addalloy ${ }^{\\mathrm{TM}}$ ) showed grain refinement on the melt pool boundary, while coarse columnar grains were seen in the melt pool [133, 148, 183]. In-depth characterisation revealed that primary $\\mathrm{Al}_{3} \\mathrm{Zr}$ precipitates $(100-400 \\mathrm{~nm})$ were responsible for the fine and equiaxed grains, while the columnar grain did not show $\\mathrm{Al}_{3} \\mathrm{Zr}$ nucleants particles, which is mainly due to Zr solute trapping from increased solidification velocities. However, this non-uniformity can be reduced by applying multiple scans [147]. This change was attributed to a shallower melt pool from re-melting of the columnar grain and forming equiaxed grains from the original scan.\n\n\\subsection*{5.1.3 Addition of Sc}\nAdditions of Sc have also been shown to achieve significant grain refinement, especially for $\\mathrm{Al}-\\mathrm{Mg}$ alloys. As with $\\mathrm{Zr}$ addition, the Sc yields fine equiaxed grains at the melt pool boundary, with columnar grains growing toward the centre of the pool. However, processing conditions can also affect the evolution of the microstructure as well as equiaxed grain structures [120]. Sc in AM alloys tends to have a high solid solubility within the Al-matrix, with increased cooling rates further allowing precipitation of nanoscale coherent $\\mathrm{Al}_{3} \\mathrm{Sc}$ particles with appropriate heat treatment [184]. Yang et al. [148] showed that an increase in the build plate temperature up to $200{ }^{\\circ} \\mathrm{C}$ yielded an overall increase in volume fraction of equiaxed grains, but that the volume fraction was less when the build platform temperature was at $35^{\\circ} \\mathrm{C}$. It was also observed that the volumetric density of equiaxed grain structures increased when temperatures were high. Figure 16 (i to l) illustrates the columnar structures without the presence of Sc, and the difference when Sc is added, where uniform equiaxed grain structures are formed on the build plate when heated to $200^{\\circ} \\mathrm{C}$ [148]. Shi et al. [120] observed a similar effect of base plate heating, however they did not observe an equiaxed microstructure. For Al$6 \\mathrm{Zn}-2 \\mathrm{Mg}$ alloy with $1 \\mathrm{wt} . \\%$ (Sc+Zr), Zhou et al. [185] observed grain refinement due to the presence of Sc and $\\mathrm{Zr}$, with equiaxed grains present at the melt pool boundary and columnar grains towards the centre. The presence of equiaxed grains around the re-melt boundaries appears to occur since these regions are where the temperature is kept at ca. $800{ }^{\\circ} \\mathrm{C}$ and\\\\\nnanoscale $\\mathrm{Al}_{3} \\mathrm{Sc}$ precipitates are stable. In the thermodynamic calculation of the phase development in Scalmalloy ${ }^{\\circledR}$, as shown in Figure 11 (b), $\\mathrm{Al}_{3} \\mathrm{Sc}$ and $\\mathrm{Al}_{3} \\mathrm{Zr}$ phases are predicted to form prior to the primary- $\\mathrm{Al}$ phase. If temperatures exceed $800{ }^{\\circ} \\mathrm{C}$ in the melt pool regions, the $\\mathrm{Al}_{3} \\mathrm{Sc}$ precipitates exhibit metastability, resulting in columnar growth.", "start_char_idx": 81941, "end_char_idx": 85702, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "5d1fa984-43ca-452f-9015-66ab8fe879d7": {"__data__": {"id_": "5d1fa984-43ca-452f-9015-66ab8fe879d7", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "56f3b1fc-e638-42e0-a2d2-c1b91710efe9", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "05e8f70e304606a599d0acdef0c1b8f1085bcf2b4170adf4ca7fc9107362c8e5", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "3ec373f6-5abc-47e3-885c-4ba6f67b4352", "node_type": "1", "metadata": {}, "hash": "bfc5f214fe4d77e117108ed19b225a736a79a3291f4ea9511b5535cded44b3f9", "class_name": "RelatedNodeInfo"}}, "text": "The presence of equiaxed grains around the re-melt boundaries appears to occur since these regions are where the temperature is kept at ca. $800{ }^{\\circ} \\mathrm{C}$ and\\\\\nnanoscale $\\mathrm{Al}_{3} \\mathrm{Sc}$ precipitates are stable. In the thermodynamic calculation of the phase development in Scalmalloy ${ }^{\\circledR}$, as shown in Figure 11 (b), $\\mathrm{Al}_{3} \\mathrm{Sc}$ and $\\mathrm{Al}_{3} \\mathrm{Zr}$ phases are predicted to form prior to the primary- $\\mathrm{Al}$ phase. If temperatures exceed $800{ }^{\\circ} \\mathrm{C}$ in the melt pool regions, the $\\mathrm{Al}_{3} \\mathrm{Sc}$ precipitates exhibit metastability, resulting in columnar growth. Alloys that contain Sc tend to exhibit low $Q$ values, therefore the development of constitutional supercooling can be insufficient to supress columnar growth, especially if the thermal gradient is relatively high. However, the phenomena of grain refinement (through $\\mathrm{Al}_{3} \\mathrm{Sc}$ ) at the re-melt boundaries is beneficial for supressing the effect of hot tears.\n\nIn summary, a large number of the available high strength Al-alloy powders were not designed specifically for the AM process. Most of these Al-alloys were designed for Direct Chill (DC) casting and a given set of thermo-mechanical processing routes (e.g. homogenisation-solution heat treatment, rolling, and extrusion) to achieve the desired properties. Therefore, the use of existing conventional alloys may lead to various defects under the rapid solidification. For that reason, it is essential to incorporate specific additives to existing alloys to alter their solidification behaviour or design new high strength Al-alloys by considering the thermochemical and thermo-mechanical aspects of the PBF process to minimise defect formation and resist columnar primary-Al growth [7]. In the literature, two approaches are explored: (i) tailor powders $e x$-situ before processing by adding alloying elements like Sc, $\\mathrm{Zr}$, and (ii) in-situ during printing by adding elements like $\\mathrm{Si}, \\mathrm{Ti}$ (micro- and nano-size particles) for the purpose of controlling defects and grain refinement. The main selection criteria for alloying elements and alloy design are:\n\n(i) reducing defects by improving fluidity of the melt pool e.g. Si,\n\n(ii) grain refinement (columnar to equiaxed transition, CET) by forming or providing nucleation sites such as $\\mathrm{Al}_{3} \\mathrm{Sc}, \\mathrm{Al}_{3} \\mathrm{Zr}, \\mathrm{Al}_{3} \\mathrm{Ti}, \\mathrm{Al}_{3} \\mathrm{Nb}$, and $\\mathrm{ZrH}$ for primary- $\\mathrm{Al}$,\n\n(iii) phase selection during the peritectic or eutectic reaction,\n\n(iv) alloy solidification characteristics and solid-state transformations that reduce the brittle temperature range during AM processing,\n\n(v) providing precipitation strengthening (ideally through a stress-relieving anneal).\n\nA preferable option is to add alloying elements within the powder feedstock (ex-situ), which provides chemical and microstructural uniformity. However, the nano-functionalisation approach (in-situ) also has number of advantages [7] e.g., pre-inoculant material can be supplied and homogeneously participate in the solidification process, nanoparticles that do not melt during printing can be introduced as nucleant particles or to produce metal matrix\\\\\ncomposite (MMC), and feasibility studies can be carried out without specialised batches of powders.", "start_char_idx": 85033, "end_char_idx": 88459, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "3ec373f6-5abc-47e3-885c-4ba6f67b4352": {"__data__": {"id_": "3ec373f6-5abc-47e3-885c-4ba6f67b4352", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "5d1fa984-43ca-452f-9015-66ab8fe879d7", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "7511efeae7ffe882d02b3aea4fa7775e78ed63ef606c791dda481f0d8781efc4", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "c3f304a4-e0c7-40b5-90e5-d9e99ef97007", "node_type": "1", "metadata": {}, "hash": "b96375622bd47332cb2ad252d28b2dd0b940f098780f9f947f2d4b8a5d1bdebb", "class_name": "RelatedNodeInfo"}}, "text": "A preferable option is to add alloying elements within the powder feedstock (ex-situ), which provides chemical and microstructural uniformity. However, the nano-functionalisation approach (in-situ) also has number of advantages [7] e.g., pre-inoculant material can be supplied and homogeneously participate in the solidification process, nanoparticles that do not melt during printing can be introduced as nucleant particles or to produce metal matrix\\\\\ncomposite (MMC), and feasibility studies can be carried out without specialised batches of powders.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-39}\n\\end{center}\n\n$\\mathrm{Al} 10 \\mathrm{SiMg} \\quad \\Longrightarrow \\mathrm{Al} 10 \\mathrm{SiMg}+\\mathrm{LaB}_{6}$\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-39(3)}\n\n$\\mathrm{Al}-\\mathrm{Mg}-\\mathrm{Zr}$ alloy $\\quad \\Longrightarrow \\mathrm{Al}-\\mathrm{Mg}-1.08 \\mathrm{Sc}-\\mathrm{Zr}$\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-39(1)}\n\\end{center}\n\n$\\mathrm{E}=77.1 \\mathrm{~J} / \\mathrm{mm}^{3}$\n\n$\\mathrm{E}=154.2 \\mathrm{~J} / \\mathrm{mm}^{3}$\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_1c47ae4d96a5c2b9fcddg-39(2)}\n\nFigure 16. Grain refinement of $A l$ alloys by solute and nucleant particle addition in $L-P B F$. (a,b) AlSi10Mg with and without $\\mathrm{TiB}_{2}$ [175]. (c,d) AlSi10Mg with and without $\\mathrm{LaB}_{6}$ [180, 181]. (e,f) 2024 alloy with and without Ti [79]. (g,h) Al-1.5Mg-0.2Sc-0.1Zr with and without addition of Si and higher Mg [150]. (i to l) Al-Mg-Zr with and without Sc with different energy densities [148]. (m,n) 7075 alloy with and without $\\mathrm{ZrH}_{2}$ [73] (o,p) 7075 with and without addition of Si [159].\n\n\\subsection*{5.2 Grain refining by physically induced force}\nSignificant research has been conducted on applying external forces such as ultrasonic [39-43], shearing [44-46] and electromagnetic [47-49] in conventional casting to achieve a refined and uniform microstructure without addition of a chemical grain refiner. In casting, widespread adaptation of the external field is restricted by the difficulty in treating large volumes of melt without contaminating the alloy. However, the melt pool is relatively small (ca. $0.1-1.0 \\mathrm{~mm}$ in width) in AM, and overall exposure time is less [68]. In welding research, many techniques such as high intensity ultrasonication [186], energy source oscillation and energy source pulsing have been used to refine microstructure and eliminate hot cracking [186, 187]. In contrast, there have only been a handful of studies carried out in AM using Al, Ti, Ni, steel and Mg alloys. Zhang et al. [188] studied AlSi12 using ultrasound, and noted an increase in relative density from $95.4 \\%$ to $99.1 \\%$, a reduction in grain size from $277.5 \\mu \\mathrm{m}$ to $87.5 \\mu \\mathrm{m}$, and considerable improvement in tensile properties. Todaro et al. [189] studied a vibrating build plate ( $20 \\mathrm{kHz}, 30 \\mu \\mathrm{m}$ amplitude), and clearly demonstrated that columnar grains are replaced with fine equiaxed grains. Although both of these studies showed promising results, builds cannot be clamped down with such approaches, which is a necessity to avoid distortion.", "start_char_idx": 87906, "end_char_idx": 91225, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "c3f304a4-e0c7-40b5-90e5-d9e99ef97007": {"__data__": {"id_": "c3f304a4-e0c7-40b5-90e5-d9e99ef97007", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "3ec373f6-5abc-47e3-885c-4ba6f67b4352", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "ab159240bb01f6fb5fb65a18f5659e579b7616a9f8d74f309f4156e606ae540b", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "b31335e2-ac57-4a66-820b-b87998accc9e", "node_type": "1", "metadata": {}, "hash": "fb6e867a57a6ce67931f8399096ba82ac08664621fd58064cba16f60ce301872", "class_name": "RelatedNodeInfo"}}, "text": "In contrast, there have only been a handful of studies carried out in AM using Al, Ti, Ni, steel and Mg alloys. Zhang et al. [188] studied AlSi12 using ultrasound, and noted an increase in relative density from $95.4 \\%$ to $99.1 \\%$, a reduction in grain size from $277.5 \\mu \\mathrm{m}$ to $87.5 \\mu \\mathrm{m}$, and considerable improvement in tensile properties. Todaro et al. [189] studied a vibrating build plate ( $20 \\mathrm{kHz}, 30 \\mu \\mathrm{m}$ amplitude), and clearly demonstrated that columnar grains are replaced with fine equiaxed grains. Although both of these studies showed promising results, builds cannot be clamped down with such approaches, which is a necessity to avoid distortion. Moreover, the application of a physical field such as ultrasound or vibration could be problematic in L-PBF based fabrication. An alternative route therefore must be explored, for example, studying the feasibility of inserting an ultrasonic sonotrode directly into the melt pool (similar to wire arc welding), which will allow the AM build plate to be clamped. Another possible route is oscillation of the heat source, which can produce frequencies of ca. $20 \\mathrm{~Hz}$, and 1-2 mm amplitudes in welding. Experimental results have demonstrated that this technique can reduce grain size, increase uniformity of weld pool, and suppress hot cracking in various $\\mathrm{Al}$ alloys [187].\n\n\\subsection*{5.3 Grain refinement by alteration of scanning strategy}\nSeveral studies $[88,89,91,92,141,147,190]$ have explored scanning strategies during the LPBF fabrication process. The incentive of these studies was ultimately to reduce porosity and residual stresses through enhancing build density. However, few experimental works have shown that the scanning strategy can influence microstructure in Al-alloys [88]. In L-PBF processing, the crystal texture and microstructural evolution can be modulated by manipulating the hatch spacing and layer thickness, as these parameters directly affect partial re-melting of neighbouring tracks [147]. These digital controls during solidification are capable of yielding\\\\\nmicrostructures with fine equiaxed grains, without hot cracking [89]. For example, Thijs et al. [88] demonstrated this concept with AlSi10Mg alloys by altering the thermal gradient during solidification. They noted that the angle or direction of scanning has a strong influence in L$\\mathrm{PBF}$, an example being that when the scanning direction angle is set at $90^{\\circ}$ between the layers, the texture is significantly reduced and a weak cubic texture along the build direction arises [88]. However, further work is needed with more alloys, combined with simulation, also keeping in mind any adverse effects of drastically altering scanning strategy. In addition, it is essential to carry out detailed study to understand microstructure evolution in PBF by linking geometry and scanning strategies considering spatial variations of $G$ and $R$. It is worth mentioning that scanning strategy alone may not be capable of controlling solidification texture because of the misalignment between the solidification growth direction and the dominant heat flow direction, and other complexities of metallic systems [2].\n\n\\section*{6 Al powder feedstocks for AM}\nPowder feedstock properties play a key role in the eventual quality of an AM-processed part, unlike other powder metallurgical processes [191]. Powder size, shape and distribution are the most important characteristics that determine suitability in L-PBF [192]. These can directly influence powder flow, packing density, melt pool character, surface roughness, defects, bulk density and mechanical properties [191-193]. Therefore, it is essential to have consistent powder characteristics that ensure consistent and reliable performance of the final build. Tan et al. [191] have carried out an in-depth literature review on powder feedstocks for AM, covering individual powder characteristic and their influence on the build.\n\nThe main routes to the manufacture of $\\mathrm{Al}$ metal powders are gas atomisation and plasma atomisation in inert gas environments, such as Ar, He and N [194]. Probably the most widely used method is gas atomisation for Al, as it is less expensive compared to the plasma. However, reports on plasma atomisation describe a higher sphericity and uniformity in size, which is ultimately favourable for PBF [191]. The obtained spherical powders had much better flowability and laser absorption relative to the raw powder. The characteristics of Al-alloy powders can be modulated by varying the atomisation conditions and by modifying the atomisation techniques.", "start_char_idx": 90519, "end_char_idx": 95188, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "b31335e2-ac57-4a66-820b-b87998accc9e": {"__data__": {"id_": "b31335e2-ac57-4a66-820b-b87998accc9e", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "c3f304a4-e0c7-40b5-90e5-d9e99ef97007", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "eb89ccef7e8f2f159929c32f11201f41ccaf86afdd432e5269cf166005eb9783", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "907334f6-160e-45d6-ab4a-5273c568a6b3", "node_type": "1", "metadata": {}, "hash": "65f04bebccca2f97d54b97ed36622c1c04a4306563c3a818c7b30be46fca8760", "class_name": "RelatedNodeInfo"}}, "text": "Therefore, it is essential to have consistent powder characteristics that ensure consistent and reliable performance of the final build. Tan et al. [191] have carried out an in-depth literature review on powder feedstocks for AM, covering individual powder characteristic and their influence on the build.\n\nThe main routes to the manufacture of $\\mathrm{Al}$ metal powders are gas atomisation and plasma atomisation in inert gas environments, such as Ar, He and N [194]. Probably the most widely used method is gas atomisation for Al, as it is less expensive compared to the plasma. However, reports on plasma atomisation describe a higher sphericity and uniformity in size, which is ultimately favourable for PBF [191]. The obtained spherical powders had much better flowability and laser absorption relative to the raw powder. The characteristics of Al-alloy powders can be modulated by varying the atomisation conditions and by modifying the atomisation techniques.\n\nCurrently, the most widely available powder feedstock for $\\mathrm{Al}$ alloys are based on commercially available $\\mathrm{Al}$ alloys, except the alloys like Scalmalloy ${ }^{\\circledR}$, which is an AM specific alloy and\\\\\navailable on the market from designated suppliers. Unfortunately, powder feedstocks are typically expensive and do not come in many varieties, with only a few common alloys being available as powder, a situation which hinders the uptake of Al-alloys for application in AM. A viable alternative is to blend these commercially available powder feedstocks to yield final products of a desired alloy composition. However, the inhomogeneity in the composition and resultant microstructural features are not desirable.\n\n\\subsection*{6.1 Effect of powder morphology on AM}\nIn powder metallurgy, it is thought that the powder size distribution has the strongest influence on packing behaviour, versus other powder characteristics. Different powder sizes are used for the different L-PBF process. For example, recommended powder sized for the laser based process is $15-45 \\mu \\mathrm{m}$ diameter and for e-beam process is 45 to $106 \\mu \\mathrm{m}$ diameter, [195]. Powder grades with a wide particle size distribution (PSD) and acceptable amounts of fine particles will typically yield high packing densities [192]. PSD can change at various stages after atomisation, for example, during storage, during L-PBF processing (spreading), and during powder recycling, which obviously influences feedstock behaviour [196]. There have been many mathematical models proposed to study powder packing in relation to PSD, with the aim of increasing packing density $[197,198]$.\n\nStudies have shown that when there is higher packing efficiency, there is a general reduction of the number of void interstices in coarse powder matrices (Figure 17). Adding fine particles fills the pores found in loose granular networks, which improves packing efficiency. There can be an increase in packing density from 74-84\\% (Figure 17 (a)) following the addition of fine particles equivalent to the size of its inter-particle voids [192, 199]. Addition of a third component can further decrease any voids, thus a high packing density of $95.7 \\%$ is achievable. Olakanmi et al. [200] worked with various multimodal blends in Al powders, where it was noted in a tri-modal blend comprising of coarse/medium/fine particle sizes, with a ratio of 5:2:1 and 75:20:5 wt.\\%, revealed an increase in tapped density by $3 \\mathrm{wt} \\%$ compared to biomodal grades with fine particles sizes of 10-14 $\\mu \\mathrm{m}$. The sphericity and morphology of the particles are of importance, since this can affect the powder packing density. Mu\u00f1iz-Lerma et al. [201] studied AlSi7Mg powder with three different size distributions, and concluded that fine particles facilitate water absorption and powder cohesion due to high surface energies, which is ultimately linked to spreading and defects. However, when a narrow PSD and particles larger than $48 \\mu \\mathrm{m}$ were used, a reduced water absorption and powder cohesion improved powder flow\\\\\nand density. PSD is also known to have a significant effect on the laser-powder interaction. Larger particles require higher laser energies to induce melting, while smaller particles, with their greater surface area, assist with the densification kinetics. Generally, there appears to be a direct correlation between the powder bed density and the part density, with powders possessing a wider range of particle sizes providing a higher powder bed density and generating higher-density parts under low laser energy intensities [191].", "start_char_idx": 94220, "end_char_idx": 98851, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "907334f6-160e-45d6-ab4a-5273c568a6b3": {"__data__": {"id_": "907334f6-160e-45d6-ab4a-5273c568a6b3", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "b31335e2-ac57-4a66-820b-b87998accc9e", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "06f515e42343cdbcc63fc7af6fd3da802d2c0e82f49d1e17fb86d893ee4c576b", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "10e8ec3e-4a22-459f-a3fb-eb6b537e6c61", "node_type": "1", "metadata": {}, "hash": "c1d568325e40fcf2a17a7ce3b5350a851fc269493ac308536211ddd543cb14d0", "class_name": "RelatedNodeInfo"}}, "text": "Mu\u00f1iz-Lerma et al. [201] studied AlSi7Mg powder with three different size distributions, and concluded that fine particles facilitate water absorption and powder cohesion due to high surface energies, which is ultimately linked to spreading and defects. However, when a narrow PSD and particles larger than $48 \\mu \\mathrm{m}$ were used, a reduced water absorption and powder cohesion improved powder flow\\\\\nand density. PSD is also known to have a significant effect on the laser-powder interaction. Larger particles require higher laser energies to induce melting, while smaller particles, with their greater surface area, assist with the densification kinetics. Generally, there appears to be a direct correlation between the powder bed density and the part density, with powders possessing a wider range of particle sizes providing a higher powder bed density and generating higher-density parts under low laser energy intensities [191]. Aboulkhair et al. [100] studied AlSi10Mg powders with two different morphologies (elongated versus spherical), and demonstrated that the spherical powder can achieve a higher relative density (99.6\\%) compared to the elongated powder (97.74\\%), under identical conditions. However, the elongated powder is also capable of producing high-density builds, but requires careful optimisation. This is one of the key challenges to build high quality components with consistency. Furthermore, PSD and powder sphericity change when the powder is recycled. This is because irregular aggregates can form when some powder particles become fused but do not adhere to the build part [196, 202]. This is particularly problematic for repeated build cycles, where PSD and sphericity changes are likely to disturb flow and packing performance [203]. An effective but time-consuming measure is to sieve the powder between cycles. An alternate, flowability of Al-powders (micron-sized) can achieve by surface modifications such as attaching nanoparticles (silica, titania and carbon black) or chemically (methyltrichlorosilane) [204].\n\nCurrently, specific to Al-alloys, there have been very limited studies performed to establish the inter-relationship between (i) powder characteristics (size, shape, distribution, packing density, rheology), (ii) processing parameters (laser output, scanning velocity, scan strategy, and platform heating), (iii) build quality (relative density, type of defects, microstructure), and (iv) resulting mechanical properties. Further, studies focusing on the changes in packing between single- and multi-layered powder, as well as understanding the overall behaviour of the powder bed, are going to be important. Uncovering the relationships between these variables, and how they affect the final quality of the build, will be an important step towards improving methods of powder processing.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-44}\n\\end{center}\n\nFigure 17. (a) Packing density and particle arrangement [192], and (b) particle compositions versus packing density [205] .\n\n\\subsection*{6.2 Effect of contamination on AM}\nBesides powder morphology, powder contamination has been an underlying issue in L-PBF. The inherent physical properties of $\\mathrm{Al}$ alloy powder pose some challenges. These include the formation of a stable and adherent surface oxide layers and the high reflectivity and thermal conductivity of the powders. Oxide formation on $\\mathrm{Al}$ surfaces is inevitable, governed by thermodynamics and the passivating nature of $\\mathrm{Al}$ oxide, even though $\\mathrm{Al}$ powder manufacture and the L-PBF process can be carried out under controlled inert conditions $\\left(\\mathrm{O}_{2} \\ll 0.15 \\%\\right.$ ) [202]. $\\mathrm{Al}$ powder particles can readily pick up contamination through adsorbed gases, moisture, organics and other inclusions that are still unavoidable [202, 206]. Oxidation hinders part consolidation through the formation of oxide skins on powder surfaces, which can induce defects, e.g. porosity and cracks, decrease the powder flowability resulting in poor powder packing density, reduce wettability generating poor adherence across formed layers, break-up of the melt pool into droplets causing balling effects and increasing the surface roughness of the part, impairing the overall mechanical properties [207]. Hu et al. [208] studied AlCu5MnCdVa alloy with different oxygen levels, and their study highlights the importance\\\\\nof controlling atmospheric oxygen and its effect on mechanical properties.", "start_char_idx": 97910, "end_char_idx": 102466, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "10e8ec3e-4a22-459f-a3fb-eb6b537e6c61": {"__data__": {"id_": "10e8ec3e-4a22-459f-a3fb-eb6b537e6c61", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "907334f6-160e-45d6-ab4a-5273c568a6b3", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "4ff06a8e09fd8b4c12b9a309adbf2343d29e7b5cb6d5875f61ca43a17dfb778b", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "54ca17ed-07cf-4af4-8b9b-53f93b6d1c12", "node_type": "1", "metadata": {}, "hash": "cafc6aa2c7489ec0808c6f8a685e6f87f0c98882c5b065c936ccd59a39b85d59", "class_name": "RelatedNodeInfo"}}, "text": "$\\mathrm{Al}$ powder particles can readily pick up contamination through adsorbed gases, moisture, organics and other inclusions that are still unavoidable [202, 206]. Oxidation hinders part consolidation through the formation of oxide skins on powder surfaces, which can induce defects, e.g. porosity and cracks, decrease the powder flowability resulting in poor powder packing density, reduce wettability generating poor adherence across formed layers, break-up of the melt pool into droplets causing balling effects and increasing the surface roughness of the part, impairing the overall mechanical properties [207]. Hu et al. [208] studied AlCu5MnCdVa alloy with different oxygen levels, and their study highlights the importance\\\\\nof controlling atmospheric oxygen and its effect on mechanical properties. For $\\mathrm{Al}$ alloys, the increment in oxygen content form large volume of oxide make component brittle. This problem can be severe, especially for thin sections or hot-cracking susceptible alloys, where formation of oxides is more significant. An additional mode of contamination comes from the formation of hydroxides because of moisture adsorption at powder surfaces, which typically occurs in humid conditions [206]. As compared to oxide layers that are solidified on the powder surface which are typically hard and brittle, adsorbate hydroxide films disrupt the flow of particles within the powder bed due to agglomeration of particles [209]. A decrease in water vapour pressure at elevated temperatures can initiate the formation of hydroxide layers, ultimately producing oxides during crystallisation. The development of oxides can modify the atmospheric condition of the chamber, for example the dissociation of hydrogen atoms during laser contact with absorbed water layers can produce gas that becomes entrapped during melt solidification, thus contributing to melt pool spattering [196]. A drying step can be used to aid in removal of residual moisture in powders, which was also reported to reduce porosity and facilitate a $>99 \\%$ relative density in AlSi10Mg alloy built parts, which is greater than that obtained without the drying step, by reducing effect of oxide and hydroxide formation [103]. Currently, limited literature is available that attempts to explore and understand the severity of contamination under different powder conditions, and there needs to be further investigation to establish good standard practice to produce consistent AM builds, which is one of the bottlenecks for the uptake of $\\mathrm{Al}$ for $\\mathrm{AM}$. Some standards have been published for use in the AM industry, but there is still a lack of known standards specific to Al-alloys.\n\n\\section*{7 Conclusions}\n$\\mathrm{Al}$ is the second most important metal after steel due to its excellent strength-to-weight ratio and corrosion resistance. Because of these advantages, along with its manufacturability and affordability, $\\mathrm{Al}$ is one of the most attractive materials for aerospace and automotive applications, in comparison with other materials like titanium and composites. Recent works published on $\\mathrm{AM}$ with $\\mathrm{Al}$ reflect the opportunity and challenges of this manufacturing pathway. In the current literature, near eutectic AlSiMg alloys have been studied in depth, starting from material feedstock through to real-life component performance. However, the amount of research on high-strength $\\mathrm{Al}$-alloys remains low, because of the hot cracking challenge associated with alloy solidification under the high cooling rates, as experienced in AM\\\\\nprocessing. Based on the literature surveyed in this review, the following conclusions can be drawn.\n\n\\begin{enumerate}\n \\item AlSiMg alloys can be easily processed through $\\mathrm{AM}$ and can achieve almost full relative density under optimised processing conditions. However, conventional wrought Alalloys (2xxx, 6xxx, and 7xxx) are difficult to process using L-PBF due to high hot crack sensitivity during solidification.\n\n \\item AlSiMg alloys produced through L-PBF show improved strength in comparison with their conventionally produced cast counterparts, which is mainly due to microstructural refinement under the high cooling rates and heat treatment. With high cooling rates, asprinted samples exhibit a higher solute concentration than the equilibrium values, which requires lower solution heat treatment times than typically used in conventional practice.\n\n \\item All Al-alloys form columnar primary-Al grains with $<001>$ texture in the build direction. This directional growth in L-PBF leads to anisotropic properties. Applying a different scanning strategy, such as varying hatch style and contour, significantly changes texture and can decreases anisotropy.", "start_char_idx": 101656, "end_char_idx": 106438, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "54ca17ed-07cf-4af4-8b9b-53f93b6d1c12": {"__data__": {"id_": "54ca17ed-07cf-4af4-8b9b-53f93b6d1c12", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "10e8ec3e-4a22-459f-a3fb-eb6b537e6c61", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41fc138901ca5f3d2caa27ffe42657e42c461c2a4d8e03a73ac683d6a52c0c84", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "aa53506c-5961-4f97-b0b2-b334b648a052", "node_type": "1", "metadata": {}, "hash": "898d04965cd32611bd1d9cf939fdc75ff124ffa28eb09fd6801a35ca5311fbe1", "class_name": "RelatedNodeInfo"}}, "text": "However, conventional wrought Alalloys (2xxx, 6xxx, and 7xxx) are difficult to process using L-PBF due to high hot crack sensitivity during solidification.\n\n \\item AlSiMg alloys produced through L-PBF show improved strength in comparison with their conventionally produced cast counterparts, which is mainly due to microstructural refinement under the high cooling rates and heat treatment. With high cooling rates, asprinted samples exhibit a higher solute concentration than the equilibrium values, which requires lower solution heat treatment times than typically used in conventional practice.\n\n \\item All Al-alloys form columnar primary-Al grains with $<001>$ texture in the build direction. This directional growth in L-PBF leads to anisotropic properties. Applying a different scanning strategy, such as varying hatch style and contour, significantly changes texture and can decreases anisotropy.\n\n \\item Most wrought Al-alloy studies find that addition of Si improves alloy printability and suppresses hot cracking as a result of an improvement in melt pool fluidity.\n\n \\item Small additions of Sc and/or Zr can markedly improve the relative density, yielding a good combination of tensile strength and ductility, and overall processability. These elements achieve this in two ways: (i) by forming nucleant particles $\\left(\\mathrm{Al}_{3} \\mathrm{Sc}\\right.$ and $\\left.\\mathrm{Al}_{3} \\mathrm{Zr}\\right)$ during the solidification, refining primary-Al grains and suppressing hot cracking, and (ii) forming nano-precipitates during the aging process to improve tensile properties of alloy. AM-specific Scalmalloy ${ }^{\\circledR}$ has clearly demonstrated the advantages of these elements in wrought alloys. Other grain-refining particles such as $\\mathrm{TiB}_{2}, \\mathrm{Al}_{3} \\mathrm{Ti}$ and solutes have also shown promising results, with respects to suppressing hot cracking and improving tensile properties of the Al-alloys.\n\n \\item The low absorptivity and high thermal conductivity of Al necessitates high energy input to melt the Al powder. This leads to vaporisation of high vapor pressure elements (e.g. $\\mathrm{Zn}$ and $\\mathrm{Mg}$ ). Loss of these elements could increase chemical heterogeneity within the L-PBF processed sample and influence solution hardening and precipitation hardening.\n\n \\item Powder characteristics (such as morphology, packing density, surface chemistry, oxygen content and hydroxides) significantly influence flowability, induce various defects and ultimately lead to low relative density and poor mechanical properties.\n\n\\end{enumerate}\n\nIn the future, additional research is required to overcome the challenges found in the AM with $\\mathrm{Al}$ alloys. The challenges are both scientific and technological; some critical ones are highlighted in the Ishikawa diagram shown in Figure 18. Much fundamental work needs to be carried out to link solidification science and process metallurgy. Accordingly, there are a number of areas which future research should focus on.\n\nCurrently, most high-strength Al-alloy research is focused on readily available commercial alloys, which were designed for completely different processing routes. In PBF, these alloys experience rapid and repeated thermal cycling, which leads to the occurrence of common defects such as hot cracking, lack of fusion, loss of alloying elements through vaporisation, residual stresses and undesirable microstructural character. In order to take advantage of rapid solidification in PBF, there is a critical need to design AM-specific high strength, high performance, and cost-effective Al-alloys, which exploit the unique features of AM to generate superior properties in comparison with their conventional counterparts. An example is the high cooling rate in conjunction with the repeated heating, which allows a high level of precipitation and dispersoid particle formation. This can be useful for the grain refining, as well yielding improved mechanical properties. New alloys must be designed by understanding geometryalloying-processing-property-performance relationships, in order to meet industrial demands in terms of the consistency in manufacturing and performance.\n\nFurthermore, it is clear from all previous studies that in order to achieve fine and equiaxed grains in high strength $\\mathrm{Al}$ alloys in $\\mathrm{AM}$, it is essential to have potent nucleant or grain refiner inoculant particles, either externally added, or which form during the build with high $Q$ value solute elements. It is necessary to find commercially viable routes to incorporate and uniformly distribute these particles and/or elements in an appropriate amount within the powder feedstock. Future research can explore the effects of scanning strategy, physically-induced force and chemical inoculation, which may provide desirable microstructures and mechanical properties for commercial requirements.", "start_char_idx": 105533, "end_char_idx": 110455, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "aa53506c-5961-4f97-b0b2-b334b648a052": {"__data__": {"id_": "aa53506c-5961-4f97-b0b2-b334b648a052", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "54ca17ed-07cf-4af4-8b9b-53f93b6d1c12", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "d38bd01c69565803f7e0d501eec501b1b51ddf74f286cca6ba9072697924a942", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "4fe633fc-1f81-40ea-990a-6883ae5cc153", "node_type": "1", "metadata": {}, "hash": "5f2e98bb0b7d3569f6af46ea95778a2599dce7c46e230b4fdf7ad8256da6d006", "class_name": "RelatedNodeInfo"}}, "text": "This can be useful for the grain refining, as well yielding improved mechanical properties. New alloys must be designed by understanding geometryalloying-processing-property-performance relationships, in order to meet industrial demands in terms of the consistency in manufacturing and performance.\n\nFurthermore, it is clear from all previous studies that in order to achieve fine and equiaxed grains in high strength $\\mathrm{Al}$ alloys in $\\mathrm{AM}$, it is essential to have potent nucleant or grain refiner inoculant particles, either externally added, or which form during the build with high $Q$ value solute elements. It is necessary to find commercially viable routes to incorporate and uniformly distribute these particles and/or elements in an appropriate amount within the powder feedstock. Future research can explore the effects of scanning strategy, physically-induced force and chemical inoculation, which may provide desirable microstructures and mechanical properties for commercial requirements.\n\nMany existing Al AM challenges can be handled using numerical simulation, digital twins and machine learning, and with closed-loop monitoring and control systems. The combination of well-thought-out experiments and simulations can significantly reduce trial and error in testing, which will ultimately allow us to create a reliable printing database for the benefit of all.\n\nIn-depth research needs to be performed on the role of $\\mathrm{Al}$ powder feedstock, starting with increasing the production throughput of high-quality powders with suitable morphology to achieve optimal powder behaviour during the PBF process. In the literature, there is only limited understanding of how powder characteristics influence process conditions and subsequent mechanical properties of PBF-processed samples. Also, it is equally important to create a strategy for how different grades of powders can be recycled, handled and re-used without affecting processing and performance of the build.\n\n$\\mathrm{Al} \\mathrm{AM}$ research will be significantly beneficial if the research is carried out in close collaboration with both ends of the supply chain (powder manufacturers and end users), and it will rapidly put fundamental developments into practice and should enhance knowledge in the area of $\\mathrm{Al} \\mathrm{AM}$.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_1c47ae4d96a5c2b9fcddg-49}\n\\end{center}\n\nFigure 18. An Ishikawa diagram, illustrating the key scientific and technological challenges in metal additive manufacturing.\n\n\\section*{Acknowledgment}\nDr Hiren Kotadia would like to thank the WMG HVM Catapult centre for funding this work.\n\n\\section*{References}\n[1] S. Lathabai, Chapter 2 - Additive Manufacturing of Aluminium-Based Alloys and Composites, in: R.N. Lumley (Ed.), Fundamentals of Aluminium Metallurgy, Woodhead Publishing2018, pp. 47-92. [2] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. WilsonHeid, A. De, W. Zhang, Additive manufacturing of metallic components - Process, structure and properties, Progress in Materials Science 92 (2018) 112-224.\n\n[3] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, International Materials Reviews 57(3) (2012) 133-164.\n\n[4] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia 117 (2016) 371-392.\n\n[5] S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today 21(1) (2018) 22-37.\n\n[6] M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Business Horizons 60(5) (2017) 677-688.\n\n[7] T.M. Pollock, A.J. Clarke, S.S. Babu, Design and Tailoring of Alloys for Additive Manufacturing, Metallurgical and Materials Transactions A 51(12) (2020) 6000-6019.\n\n[8] W.J. Sames, F.A. List, S. Pannala, R.R.", "start_char_idx": 109439, "end_char_idx": 113500, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "4fe633fc-1f81-40ea-990a-6883ae5cc153": {"__data__": {"id_": "4fe633fc-1f81-40ea-990a-6883ae5cc153", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "aa53506c-5961-4f97-b0b2-b334b648a052", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "9d5e50f4ace327891e89de2b29f154747622ec6c19395d1fbf5dcd9b8122bd8d", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "d8a9ef1e-93b2-4d87-a33a-3279db65af14", "node_type": "1", "metadata": {}, "hash": "c8c577a312b000cbc683cff69712c7ec52bacf7810d59a3226ac81db5a265437", "class_name": "RelatedNodeInfo"}}, "text": "Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O'Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Materials Today 21(1) (2018) 22-37.\n\n[6] M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Business Horizons 60(5) (2017) 677-688.\n\n[7] T.M. Pollock, A.J. Clarke, S.S. Babu, Design and Tailoring of Alloys for Additive Manufacturing, Metallurgical and Materials Transactions A 51(12) (2020) 6000-6019.\n\n[8] W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing, International Materials Reviews 61(5) (2016) 315-360.\n\n[9] X. Tan, Y. Kok, Y.J. Tan, M. Descoins, D. Mangelinck, S.B. Tor, K.F. Leong, C.K. Chua, Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting, Acta Materialia 97 (2015) 1-16.\n\n[10] L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, R.B. Wicker, Microstructures and mechanical properties of electron beam-rapid manufactured Ti$6 \\mathrm{Al}-4 \\mathrm{~V}$ biomedical prototypes compared to wrought Ti-6AI-4V, Materials Characterization 60(2) (2009) 96-105.\n\n[11] E. Wycisk, S. Siddique, D. Herzog, F. Walther, C. Emmelmann, Fatigue Performance of Laser Additive Manufactured Ti-6Al-4V in Very High Cycle Fatigue Regime up to 109 Cycles, Frontiers in Materials 2(72) (2015).\n\n[12] A.M. Beese, B.E. Carroll, Review of Mechanical Properties of Ti-6Al-4V Made by Laser-Based Additive Manufacturing Using Powder Feedstock, JOM 68(3) (2016) 724-734.\n\n[13] D. Cormier, O. Harrysson, T. Mahale, H. West, Freeform Fabrication of Titanium Aluminide via Electron Beam Melting Using Prealloyed and Blended Powders, Research Letters in Materials Science 2007 (2007) 034737.\n\n[14] D. Srivastava, I.T.H. Chang, M.H. Loretto, The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples, Intermetallics 9(12) (2001) 10031013.\n\n[15] K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina, Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting, Acta Materialia 60(5) (2012) 2229-2239.\n\n[16] J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, J.C. Feng, Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding, Materials Science and Engineering: A 676 (2016) 395-405.\n\n[17] H.E. Helmer, C. K\u00f6rner, R.F. Singer, Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure, Journal of Materials Research 29(17) (2014) 1987-1996.\n\n[18] G.P. Dinda, A.K.", "start_char_idx": 112915, "end_char_idx": 115863, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "d8a9ef1e-93b2-4d87-a33a-3279db65af14": {"__data__": {"id_": "d8a9ef1e-93b2-4d87-a33a-3279db65af14", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "4fe633fc-1f81-40ea-990a-6883ae5cc153", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "f3237ff721ba8fe05402ae9ca7d9d221c49dbfacca11415335f12c20f20826ba", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "3e4ad4b6-8c13-41e1-8e7b-1385bd1a324f", "node_type": "1", "metadata": {}, "hash": "228c77a78b7f5ab588aa78e6240db70969b2c6a8788f368df30e6e4058c16e6c", "class_name": "RelatedNodeInfo"}}, "text": "[16] J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, J.C. Feng, Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding, Materials Science and Engineering: A 676 (2016) 395-405.\n\n[17] H.E. Helmer, C. K\u00f6rner, R.F. Singer, Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: Processing window and microstructure, Journal of Materials Research 29(17) (2014) 1987-1996.\n\n[18] G.P. Dinda, A.K. Dasgupta, J. Mazumder, Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability, Materials Science and Engineering: A 509(1) (2009) 98-104.\n\n[19] K. Mumtaz, N. Hopkinson, Selective laser melting of Inconel 625 using pulse shaping, Rapid Prototyping Journal 16(4) (2010) 248-257.\n\n[20] M. Rombouts, G. Maes, M. Mertens, W. Hendrix, Laser metal deposition of Inconel 625: Microstructure and mechanical properties, Journal of Laser Applications 24(5) (2012) 052007.\n\n[21] A.G. Demir, B. Previtali, Additive manufacturing of cardiovascular CoCr stents by selective laser melting, Materials \\& Design 119 (2017) 338-350.\n\n[22] N.V. Kazantseva, I.V. Ezhov, D.I. Davydov, A.G. Merkushev, Analysis of Structure and Mechanical Properties of Co-Cr-Mo Alloy Obtained by 3D Printing, Physics of Metals and Metallography 120(12) (2019) 1172-1179.\n\n[23] P. Bajaj, A. Hariharan, A. Kini, P. K\u00fcrnsteiner, D. Raabe, E.A. J\u00e4gle, Steels in additive manufacturing: A review of their microstructure and properties, Materials Science and Engineering: A 772 (2020) 138633.\n\n[24] A. Yadollahi, N. Shamsaei, S.M. Thompson, D.W. Seely, Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel, Materials Science and Engineering: A 644 (2015) 171-183.\n\n[25] I.M. Kusoglu, B. G\u00f6kce, S. Barcikowski, Research trends in laser powder bed fusion of Al alloys within the last decade, Additive Manufacturing 36 (2020) 101489.\n\n[26] N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting, Progress in Materials Science 106 (2019) 100578.\n\n[27] C. Panwisawas, Y.T. Tang, R.C. Reed, Metal 3D printing as a disruptive technology for superalloys, Nature Communications 11(1) (2020) 2327.\n\n[28] S.M.H. Hojjatzadeh, N.D. Parab, W. Yan, Q. Guo, L. Xiong, C. Zhao, M. Qu, L.I. Escano, X. Xiao, K. Fezzaa, W. Everhart, T. Sun, L. Chen, Pore elimination mechanisms during 3D printing of metals, Nature Communications 10(1) (2019) 3088.\n\n[29] Word Aluminium Organisation (2020).\n\n[30] Aluminium in cars: unlocking the light-weighting potential, European Aluminium Association (2020).\n\n[31] J. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International (1993).\n\n[32] D. Raabe, C.C. Tasan, E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature 575(7781) (2019) 64-74.", "start_char_idx": 115356, "end_char_idx": 118406, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "3e4ad4b6-8c13-41e1-8e7b-1385bd1a324f": {"__data__": {"id_": "3e4ad4b6-8c13-41e1-8e7b-1385bd1a324f", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "d8a9ef1e-93b2-4d87-a33a-3279db65af14", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "08d7b5793bf38002e4398fb1a76cca1f539db0aa154bc112fdb1749b2ac8dd42", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "b272570a-eae0-4341-844b-96397a39bf72", "node_type": "1", "metadata": {}, "hash": "abc903869ffe52396136414d55ac67943b7e25a33d6a85e81e903dcf6b1ce518", "class_name": "RelatedNodeInfo"}}, "text": "Hojjatzadeh, N.D. Parab, W. Yan, Q. Guo, L. Xiong, C. Zhao, M. Qu, L.I. Escano, X. Xiao, K. Fezzaa, W. Everhart, T. Sun, L. Chen, Pore elimination mechanisms during 3D printing of metals, Nature Communications 10(1) (2019) 3088.\n\n[29] Word Aluminium Organisation (2020).\n\n[30] Aluminium in cars: unlocking the light-weighting potential, European Aluminium Association (2020).\n\n[31] J. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International (1993).\n\n[32] D. Raabe, C.C. Tasan, E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature 575(7781) (2019) 64-74.\n\n[33] I. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, 4th Edition, ButterworthHeinemann (2005).\n\n[34] M. Nowak, L. Bolzoni, N. Hari Babu, Grain refinement of Al-Si alloys by Nb-B inoculation. Part I: Concept development and effect on binary alloys, Materials \\& Design (1980-2015) 66 (2015) 366375.\n\n[35] X. Liu, Y. Wu, X. Bian, The nucleation sites of primary Si in Al-Si alloys after addition of boron and phosphorus, Journal of Alloys and Compounds 391(1) (2005) 90-94.\n\n[36] P.B. Crosley, L.F. Mondolfo, The modification of Aluminium-Silicon alloys, Mod Cast 49(63) (1966).\n\n[37] K. Nogita, S.D. McDonald, K. Tsujimoto, K. Yasuda, A.K. Dahle, Aluminium phosphide as a eutectic grain nucleus in hypoeutectic Al-Si alloys, Microscopy 53(4) (2004) 361-369.\n\n[38] C.R. Ho, B. Cantor, Heterogeneous nucleation of solidification of Si in Al-Si and Al-Si-P alloys, Acta Metallurgica et Materialia 43(8) (1995) 3231-3246.\n\n[39] G.I. Eskin, D.G. Eskin, Ultrasonic treatment of light alloys metals, 2nd Edition CRS Press (2014).\n\n[40] A. Das, H.R. Kotadia, Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy, Materials Chemistry and Physics 125(3) (2011) 853-859.\n\n[41] H.R. Kotadia, A. Das, Modification of solidification microstructure in hypo- and hyper-eutectic Al-Si alloys under high-intensity ultrasonic irradiation, Journal of Alloys and Compounds 620(Supplement C) (2015) 1-4.\n\n[42] H.R. Kotadia, M. Qian, D.G. Eskin, A. Das, On the microstructural refinement in commercial purity $\\mathrm{Al}$ and $\\mathrm{Al}-10 \\mathrm{wt} \\%$ Cu alloy under ultrasonication during solidification, Materials \\& Design 132(Supplement C) (2017) 266-274.\n\n[43] H.R. Kotadia, M. Qian, A. Das, Microstructural modification of recycled aluminium alloys by highintensity ultrasonication: Observations from custom Al- $2 \\mathrm{Si}-2 \\mathrm{Mg}-1.2 \\mathrm{Fe}-(0.5,1.0) \\mathrm{Mn}$ alloys, Journal of Alloys and Compounds 823 (2020) 153833.\n\n[44] H.R. Kotadia, N. Hari Babu, H. Zhang, Z. Fan, Microstructural refinement of Al-10.2\\%Si alloy by intensive shearing, Materials Letters 64(6) (2010) 671-673.\n\n[45] H.R. Kotadia, E. Doernberg, J.B.", "start_char_idx": 117795, "end_char_idx": 120642, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "b272570a-eae0-4341-844b-96397a39bf72": {"__data__": {"id_": "b272570a-eae0-4341-844b-96397a39bf72", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "3e4ad4b6-8c13-41e1-8e7b-1385bd1a324f", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "8819c7377504a5920b108499a43372af84649d8ffc7be647a1d035f9bbd3eb03", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "07898340-a860-4649-9219-0876339685a1", "node_type": "1", "metadata": {}, "hash": "0211796f7322ab38afd0ea27cea2b8f94059a881c70b0f0f3e44a9be5fd0184b", "class_name": "RelatedNodeInfo"}}, "text": "[43] H.R. Kotadia, M. Qian, A. Das, Microstructural modification of recycled aluminium alloys by highintensity ultrasonication: Observations from custom Al- $2 \\mathrm{Si}-2 \\mathrm{Mg}-1.2 \\mathrm{Fe}-(0.5,1.0) \\mathrm{Mn}$ alloys, Journal of Alloys and Compounds 823 (2020) 153833.\n\n[44] H.R. Kotadia, N. Hari Babu, H. Zhang, Z. Fan, Microstructural refinement of Al-10.2\\%Si alloy by intensive shearing, Materials Letters 64(6) (2010) 671-673.\n\n[45] H.R. Kotadia, E. Doernberg, J.B. Patel, Z. Fan, R. Schmid-Fetzer, Solidification of Al-Sn-Cu Based Immiscible Alloys under Intense Shearing, Metallurgical and Materials Transactions A 40(9) (2009) 2202-2211.\n\n[46] H.R. Kotadia, N. Hari Babu, H. Zhang, S. Arumuganathar, Z. Fan, Solidification Behavior of Intensively Sheared Hypoeutectic Al-Si Alloy Liquid, Metallurgical and Materials Transactions A 42(4) (2011) 1117-1126.\n\n[47] S. Nafisi, D. Emadi, M.T. Shehata, R. Ghomashchi, Effects of electromagnetic stirring and superheat on the microstructural characteristics of Al-Si-Fe alloy, Materials Science and Engineering: A 432(1) (2006) 71-83.\n\n[48] T. Campanella, C. Charbon, M. Rappaz, Grain refinement induced by electromagnetic stirring: A dendrite fragmentation criterion, Metallurgical and Materials Transactions A 35(10) (2004) 32013210.\n\n[49] C. Vives, Electromagnetic refining of aluminum alloys by the CREM process: Part I. Working principle and metallurgical results, Metallurgical Transactions B 20(5) (1989) 623-629.\n\n[50] A.N. Lakshmanan, S.G. Shabestari, J.E. Gruzleski, Microstructure control of iron intermetallics in Al-Si casting alloys, Z. Metallkd. 86(7) (1995) 457-67.\n\n[51] A.M. Samuel, A. Pennors, C. Villeneuve, F.H. Samuel, H.W. Doty, S. Valtierra, Effect of cooling rate and $\\mathrm{Sr}$-modification on porosity and Fe-intermetallics formation in $\\mathrm{Al}-6.5 \\% \\mathrm{Si}-3.5 \\%$ Cu-Fe alloys, International Journal of Cast Metals Research 13(4) (2000) 231-253.\n\n[52] J.D. Robson, O. Engler, C. Sigli, A. Deschamps, W.J. Poole, Advances in Microstructural Understanding of Wrought Aluminum Alloys, Metallurgical and Materials Transactions A 51(9) (2020) 4377-4389.\n\n[53] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering: A 280(1) (2000) 37-49.\n\n[54] E.A. J\u00e4gle, Z. Sheng, L. Wu, L. Lu, J. Risse, A. Weisheit, D. Raabe, Precipitation Reactions in AgeHardenable Alloys During Laser Additive Manufacturing, JOM 68(3) (2016) 943-949.\n\n[55] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge Univ. Press, Cambridge (1997).\n\n[56] K. Schmidtke, F. Palm, A. Hawkins, C. Emmelmann, Process and Mechanical Properties: Applicability of a Scandium modified Al-alloy for Laser Additive Manufacturing, Physics Procedia 12 (2011) 369-374.", "start_char_idx": 120157, "end_char_idx": 123042, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "07898340-a860-4649-9219-0876339685a1": {"__data__": {"id_": "07898340-a860-4649-9219-0876339685a1", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "b272570a-eae0-4341-844b-96397a39bf72", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "d3cd469c587e0609703fb20b4071b95fd128d29f72fee448d1ef249e4939cbea", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "ffa63324-5ed8-4273-ad92-a5a7d63721b2", "node_type": "1", "metadata": {}, "hash": "67ab9cf991c8d04dbe204ee82679700f6d52ef6a957a0a0561be777838442a9f", "class_name": "RelatedNodeInfo"}}, "text": "[54] E.A. J\u00e4gle, Z. Sheng, L. Wu, L. Lu, J. Risse, A. Weisheit, D. Raabe, Precipitation Reactions in AgeHardenable Alloys During Laser Additive Manufacturing, JOM 68(3) (2016) 943-949.\n\n[55] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge Univ. Press, Cambridge (1997).\n\n[56] K. Schmidtke, F. Palm, A. Hawkins, C. Emmelmann, Process and Mechanical Properties: Applicability of a Scandium modified Al-alloy for Laser Additive Manufacturing, Physics Procedia 12 (2011) 369-374.\n\n[57] C. Suryanarayana, Rapid Solidification Processing, in: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssi\u00e8re (Eds.), Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 2002, pp. 1-10.\n\n[58] W. Kurz, B. Giovanola, R. Trivedi, Theory of microstructural development during rapid solidification, Acta Metallurgica 34(5) (1986) 823-830.\n\n[59] M. Das, V.K. Balla, D. Basu, S. Bose, A. Bandyopadhyay, Laser processing of SiC-particlereinforced coating on titanium, Scripta Materialia 63(4) (2010) 438-441.\n\n[60] B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, E.J. Lavernia, Thermal Behavior and Microstructural Evolution during Laser Deposition with Laser-Engineered Net Shaping: Part I. Numerical Calculations, Metallurgical and Materials Transactions A 39(9) (2008) 2228-2236.\n\n[61] E.J. Lavernia, J.D. Ayers, T.S. Srivatsan, Rapid solidification processing with specific application to aluminium alloys, International Materials Reviews 37(1) (1992) 1-44.\n\n[62] J.D. Hunt, Solidification and casting of metals, The Metals Society, London (1979) 3-9.\n\n[63] D.M. Stefanescu, R. Ruxanda, Fundamentals of Solidification Metallography and Microstructures, in: G.F. Vander Voort (Ed.), ASM International2004, pp. 1-24.\n\n[64] A. Tonejc, X-ray study of the decomposition of metastable Al-rich Al-Fe solid solutions, Metallurgical Transactions 2(2) (1971) 437-440.\n\n[65] M. Ruhr, E.E. Lavernia, J.C. Baram, Extended Al(Mn) solution in a rapidly solidified Al-Li-Mn-Zr alloy, Metallurgical Transactions A 21(6) (1990) 1785-1789.\n\n[66] E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proceedings of the Physical Society. Section B 64(9) (1951) 747-753.\n\n[67] N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953) 25-28\n\n[68] D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, M.A. Easton, Grain Refinement of Alloys in Fusion-Based Additive Manufacturing Processes, Metallurgical and Materials Transactions A 51(9) (2020) 4341-4359.\n\n[69] A.B. Spierings, K. Dawson, M. Voegtlin, F. Palm, P.J. Uggowitzer, Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting, CIRP Annals 65(1) (2016) 213-216.\n\n[70] W.E.", "start_char_idx": 122537, "end_char_idx": 125375, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "ffa63324-5ed8-4273-ad92-a5a7d63721b2": {"__data__": {"id_": "ffa63324-5ed8-4273-ad92-a5a7d63721b2", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "07898340-a860-4649-9219-0876339685a1", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "43cade4db7f206ccd3c36c03db8ece2ca4e039623153d8cd853ec93996e1286e", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "e8d20761-c979-4b2f-82cb-69ebe4429642", "node_type": "1", "metadata": {}, "hash": "7f20f97d943d632256a1b25142ba6b27ccc4c302b1c6beb064d72bca0158e599", "class_name": "RelatedNodeInfo"}}, "text": "174 (1953) 25-28\n\n[68] D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, M.A. Easton, Grain Refinement of Alloys in Fusion-Based Additive Manufacturing Processes, Metallurgical and Materials Transactions A 51(9) (2020) 4341-4359.\n\n[69] A.B. Spierings, K. Dawson, M. Voegtlin, F. Palm, P.J. Uggowitzer, Microstructure and mechanical properties of as-processed scandium-modified aluminium using selective laser melting, CIRP Annals 65(1) (2016) 213-216.\n\n[70] W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges, Applied Physics Reviews 2(4) (2015) 041304.\n\n[71] M. Wang, B. Song, Q. Wei, Y. Zhang, Y. Shi, Effects of annealing on the microstructure and mechanical properties of selective laser melted AISi7Mg alloy, Materials Science and Engineering: A 739 (2019) 463-472.\n\n[72] N. Read, W. Wang, K. Essa, M.M. Attallah, Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development, Materials \\& Design (1980-2015) 65 (2015) 417-424.\n\n[73] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, 3D printing of high-strength aluminium alloys, Nature 549 (2017) 365.\n\n[74] L. Zhuo, Z. Wang, H. Zhang, E. Yin, Y. Wang, T. Xu, C. Li, Effect of post-process heat treatment on microstructure and properties of selective laser melted AlSi10Mg alloy, Materials Letters 234 (2019) 196-200.\n\n[75] K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. L\u00f6ber, Z. Wang, A.K. Chaubey, U. K\u00fchn, J. Eckert, Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment, Materials Science and Engineering: A 590 (2014) 153-160.\n\n[76] X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, T.B. Sercombe, A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25\\% tensile ductility, Acta Materialia 95 (2015) 7482.\n\n[77] N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao, C. Coddet, Microstructure and wear behavior of in-situ hypereutectic Al-high Si alloys produced by selective laser melting, Materials \\& Design 99 (2016) 120-126.\n\n[78] P. Ma, K.G. Prashanth, S. Scudino, Y. Jia, H. Wang, C. Zou, Z. Wei, J. Eckert, Influence of Annealing on Mechanical Properties of Al-20Si Processed by Selective Laser Melting, Metals 4(1) (2014) 28-36.\n\n[79] Q. Tan, J. Zhang, Q. Sun, Z. Fan, G. Li, Y. Yin, Y. Liu, M.-X. Zhang, Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles, Acta Materialia 196 (2020) 1-16.", "start_char_idx": 124857, "end_char_idx": 127635, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "e8d20761-c979-4b2f-82cb-69ebe4429642": {"__data__": {"id_": "e8d20761-c979-4b2f-82cb-69ebe4429642", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "ffa63324-5ed8-4273-ad92-a5a7d63721b2", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "27ca621e3c5c885da2a464e0ad067e1630607f70aa9a2550e947ea1cb7231c49", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "2ebf4c3d-3ca2-4096-a4b0-58de45bab59b", "node_type": "1", "metadata": {}, "hash": "40e3fba7226037b625108c3d7c8282c4ff4215d65992f60cf78f7b972f30a72c", "class_name": "RelatedNodeInfo"}}, "text": "[78] P. Ma, K.G. Prashanth, S. Scudino, Y. Jia, H. Wang, C. Zou, Z. Wei, J. Eckert, Influence of Annealing on Mechanical Properties of Al-20Si Processed by Selective Laser Melting, Metals 4(1) (2014) 28-36.\n\n[79] Q. Tan, J. Zhang, Q. Sun, Z. Fan, G. Li, Y. Yin, Y. Liu, M.-X. Zhang, Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles, Acta Materialia 196 (2020) 1-16.\n\n[80] F. Belelli, R. Casati, F. Larini, M. Riccio, M. Vedani, Investigation on two Ti-B-reinforced Al alloys for Laser Powder Bed Fusion, Materials Science and Engineering: A 808 (2021) 140944.\n\n[81] Q. Jia, P. Rometsch, S. Cao, K. Zhang, X. Wu, Towards a high strength aluminium alloy development methodology for selective laser melting, Materials \\& Design 174 (2019) 107775. [82] S.Z. Uddin, L.E. Murr, C.A. Terrazas, P. Morton, D.A. Roberson, R.B. Wicker, Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing, Additive Manufacturing 22 (2018) 405-415.\n\n[83] A. Aversa, G. Marchese, A. Saboori, E. Bassini, D. Manfredi, S. Biamino, D. Ugues, P. Fino, M. Lombardi, New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review, Materials (Basel) 12(7) (2019) 1007.\n\n[84] N. Kang, P. Coddet, H. Liao, C. Coddet, Macrosegregation mechanism of primary silicon phase in selective laser melting hypereutectic Al - High Si alloy, Journal of Alloys and Compounds 662 (2016) 259-262.\n\n[85] J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, M.H. Loretto, Microstructure and strength of selectively laser melted AlSi10Mg, Acta Materialia 117 (2016) 311-320.\n\n[86] Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor, Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review, Materials \\& Design 139 (2018) 565-586.\n\n[87] K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation, Materials Science and Technology 31(8) (2015) 917-923.\n\n[88] L. Thijs, K. Kempen, J.-P. Kruth, J. Van Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Materialia 61(5) (2013) 1809-1819.\n\n[89] P. Kontis, E. Chauvet, Z. Peng, J. He, A.K. da Silva, D. Raabe, C. Tassin, J.-J. Blandin, S. Abed, R. Dendievel, B. Gault, G. Martin, Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys, Acta Materialia 177 (2019) 209-221.\n\n[90] L.Z. Zhao, M.J. Zhao, L.J. Song, J. Mazumder, Ultra-fine Al-Si hypereutectic alloy fabricated by direct metal deposition, Materials \\& Design (1980-2015) 56 (2014) 542-548.", "start_char_idx": 127218, "end_char_idx": 130011, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "2ebf4c3d-3ca2-4096-a4b0-58de45bab59b": {"__data__": {"id_": "2ebf4c3d-3ca2-4096-a4b0-58de45bab59b", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "e8d20761-c979-4b2f-82cb-69ebe4429642", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "9b8b9e7d6cd931977ee51b57118e45216c1b57b3c3c4c4c9bfd35c9ae5c13960", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "4cec025f-2498-411f-86f6-4d03c6346eab", "node_type": "1", "metadata": {}, "hash": "470d100329a93c448f5be36b1f307905c68789d9f816156563b860b0beff4a62", "class_name": "RelatedNodeInfo"}}, "text": "[89] P. Kontis, E. Chauvet, Z. Peng, J. He, A.K. da Silva, D. Raabe, C. Tassin, J.-J. Blandin, S. Abed, R. Dendievel, B. Gault, G. Martin, Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys, Acta Materialia 177 (2019) 209-221.\n\n[90] L.Z. Zhao, M.J. Zhao, L.J. Song, J. Mazumder, Ultra-fine Al-Si hypereutectic alloy fabricated by direct metal deposition, Materials \\& Design (1980-2015) 56 (2014) 542-548.\n\n[91] H. Zhang, D. Gu, D. Dai, C. Ma, Y. Li, R. Peng, S. Li, G. Liu, B. Yang, Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of $\\mathrm{Sc}$ and $\\mathrm{Zr}$ modified $\\mathrm{Al}-$ Mg alloy produced by selective laser melting, Materials Science and Engineering: A 788 (2020) 139593.\n\n[92] R.M. Gouveia, F.J.G. Silva, E. Atzeni, D. Sormaz, J.L. Alves, A.B. Pereira, Effect of Scan Strategies and Use of Support Structures on Surface Quality and Hardness of L-PBF AISi10Mg Parts, Materials 13(10) (2020) 2248.\n\n[93] S.R. Ch, A. Raja, P. Nadig, R. Jayaganthan, N.J. Vasa, Influence of working environment and built orientation on the tensile properties of selective laser melted AISi10Mg alloy, Materials Science and Engineering: A 750 (2019) 141-151.\n\n[94] P. Yang, M.A. Rodriguez, D.K. Stefan, A. Allen, D. Bradley, L. Deibler, B.H. Jared, Microstructure and Thermal Properties of Selective Laser Melted AlSi1OMg Alloy, 3rd AM Cross-JOWOG Meeting, Kansas City National Security Campus, Kansas City, MO, 2017 (2017).\n\n[95] S.N. Grigoriev, T.V. Tarasova, G.O. Gvozdeva, S. Nowotny, Solidification behaviour during laser microcladding of Al-Si alloys, Surface and Coatings Technology 268 (2015) 303-309.\n\n[96] E.O. Olakanmi, Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties, Journal of Materials Processing Technology 213(8) (2013) 1387-1405.\n\n[97] H. Rao, S. Giet, K. Yang, X. Wu, C.H.J. Davies, The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting, Materials \\& Design 109 (2016) 334346.\n\n[98] C.E. Roberts, D. Bourell, T. Watt, J. Cohen, A Novel Processing Approach for Additive Manufacturing of Commercial Aluminum Alloys, Physics Procedia 83 (2016) 909-917.\n\n[99] N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Additive Manufacturing 1-4 (2014) 77-86.\n\n[100] N.T. Aboulkhaira, I. Maskery, I. Ashcroft, C. Tuck, N.M. Everitt, The role of powder properties on the processability of Aluminium alloys in selective laser melting, Lasers in Manufacturing Conference 2015 (2015).\n\n[101] D. Gu, Y. Shen, Balling phenomena during direct laser sintering of multi-component Cu-based metal powder, Journal of Alloys and Compounds 432(1) (2007) 163-166.", "start_char_idx": 129553, "end_char_idx": 132431, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "4cec025f-2498-411f-86f6-4d03c6346eab": {"__data__": {"id_": "4cec025f-2498-411f-86f6-4d03c6346eab", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "2ebf4c3d-3ca2-4096-a4b0-58de45bab59b", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "1145e0ad46c9400ea73509d361541cdb0e858385216be18bfda58b6c204cf528", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "26bce920-1a7e-4fc3-90c7-b891a2e30029", "node_type": "1", "metadata": {}, "hash": "831c959a976024be2adac094bef5facbb91a1747030de630df897d46258cae46", "class_name": "RelatedNodeInfo"}}, "text": "[99] N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Additive Manufacturing 1-4 (2014) 77-86.\n\n[100] N.T. Aboulkhaira, I. Maskery, I. Ashcroft, C. Tuck, N.M. Everitt, The role of powder properties on the processability of Aluminium alloys in selective laser melting, Lasers in Manufacturing Conference 2015 (2015).\n\n[101] D. Gu, Y. Shen, Balling phenomena during direct laser sintering of multi-component Cu-based metal powder, Journal of Alloys and Compounds 432(1) (2007) 163-166.\n\n[102] C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, R. Poprawe, Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg, Journal of Materials Processing Technology 221 (2015) 112-120.\n\n[103] K.V. Yang, P. Rometsch, T. Jarvis, J. Rao, S. Cao, C. Davies, X. Wu, Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting, Materials Science and Engineering: A 712 (2018) 166-174.\n\n[104] T. Kimura, T. Nakamoto, M. Mizuno, H. Araki, Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting, Materials Science and Engineering: A 682 (2017) 593-602.\n\n[105] N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N.M. Everitt, On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties, Journal of Materials Processing Technology 230 (2016) 88-98.\n\n[106] G. Guiglionda, W.J. Poole, The role of damage on the deformation and fracture of Al-Si eutectic alloys, Materials Science and Engineering: A 336(1) (2002) 159-169.\n\n[107] J.H. Rao, Y. Zhang, K. Zhang, X. Wu, A. Huang, Selective laser melted Al-7Si-0.6Mg alloy with insitu precipitation via platform heating for residual strain removal, Materials \\& Design 182 (2019) 108005.\n\n[108] T. Kimura, T. Nakamoto, Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting, Materials \\& Design 89 (2016) 1294-1301. [109] K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Mechanical Properties of AISi10Mg Produced by Selective Laser Melting, Physics Procedia 39 (2012) 439-446.\n\n[110] D. Buchbinder, W. Meiners, K. Wissenbach, R. Poprawe, Selective laser melting of aluminum die-cast alloy-Correlations between process parameters, solidification conditions, and resulting mechanical properties, Journal of Laser Applications 27(S2) (2015) S29205.\n\n[111] K.G. Prashanth, S. Scudino, J. Eckert, Defining the tensile properties of Al-12Si parts produced by selective laser melting, Acta Materialia 126 (2017) 25-35.\n\n[112] J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, U. Ramamurty, Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting, Acta Materialia 115 (2016) 285-294.\n\n[113] X.J. Wang, L.C. Zhang, M.H. Fang, T.B. Sercombe, The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy, Materials Science and Engineering: A 597 (2014) 370-375.\n\n[114] G.A. Edwards, K. Stiller, G.L.", "start_char_idx": 131870, "end_char_idx": 135079, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "26bce920-1a7e-4fc3-90c7-b891a2e30029": {"__data__": {"id_": "26bce920-1a7e-4fc3-90c7-b891a2e30029", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "4cec025f-2498-411f-86f6-4d03c6346eab", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "9b4366b3319817e7eaffd025200584a27439fe4226e5a40cc95769739c527882", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "bf9ff556-444c-4f2c-98ff-473ac9cb54e8", "node_type": "1", "metadata": {}, "hash": "f22a851a0485db9b029c5d46ca7dee0d10742e2dbf183fea656159c70eeaa5ae", "class_name": "RelatedNodeInfo"}}, "text": "[112] J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, U. Ramamurty, Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting, Acta Materialia 115 (2016) 285-294.\n\n[113] X.J. Wang, L.C. Zhang, M.H. Fang, T.B. Sercombe, The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy, Materials Science and Engineering: A 597 (2014) 370-375.\n\n[114] G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al-Mg-Si alloys, Acta Materialia 46(11) (1998) 3893-3904.\n\n[115] W.T. Donlon, Precipitation of aluminum in the silicon phase contained in W319 and 356 aluminum alloys, Metallurgical and Materials Transactions A 34(3) (2003) 523-529.\n\n[116] K. Matsuda, D. Teguri, T. Sato, Y. Uetani, S. Ikeno, Cu Segregation around Metastable Phase in Al-Mg-Si Alloy with Cu, MATERIALS TRANSACTIONS 48(5) (2007) 967-974.\n\n[117] J.H. Rao, Y. Zhang, K. Zhang, A. Huang, C.H.J. Davies, X. Wu, Multiple precipitation pathways in an Al-7Si-0.6Mg alloy fabricated by selective laser melting, Scripta Materialia 160 (2019) 66-69.\n\n[118] J.H. Rao, P. Rometsch, X. Wu, C.H.J. Davies, 7 - The processing and heat treatment of selective laser melted Al-7Si-0.6Mg alloy, in: F. Froes, R. Boyer (Eds.), Additive Manufacturing for the Aerospace Industry, Elsevier2019, pp. 143-161.\n\n[119] I. Rosenthal, R. Shneck, A. Stern, Heat treatment effect on the mechanical properties and fracture mechanism in AISi10Mg fabricated by additive manufacturing selective laser melting process, Materials Science and Engineering: A 729 (2018) 310-322.\n\n[120] Y. Shi, K. Yang, S.K. Kairy, F. Palm, X. Wu, P.A. Rometsch, Effect of platform temperature on the porosity, microstructure and mechanical properties of an $\\mathrm{Al}-\\mathrm{Mg}-\\mathrm{Sc}-\\mathrm{Zr}$ alloy fabricated by selective laser melting, Materials Science and Engineering: A 732 (2018) 41-52.\n\n[121] S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, F. Walther, Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting, Journal of Materials Processing Technology 221 (2015) 205-213.\n\n[122] S. Siddique, M. Imran, F. Walther, Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AISi12 alloy, International Journal of Fatigue 94 (2017) 246-254. [123] N. Coniglio, C.E. Cross, Initiation and growth mechanisms for weld solidification cracking, International Materials Reviews 58(7) (2013) 375-397.\n\n[124] M. Kumar, G. Gibbons, A. Das, I. Manna, D. Tanner, H.R. Kotadia, Additive manufacturing of Aluminium alloy 2024 by laser powder bed fusion: Microstructural evolution, defects and mechanical properties, Rapid Prototyping Journal, Under review (2021).\n\n[125] I. Todd, No more tears for metal 3D printing, Nature 549(7672) (2017) 342-343.\n\n[126] G. Mathers, 11 - Weld defects and quality control, in: G. Mathers (Ed.), The Welding of Aluminium and its Alloys, Woodhead Publishing2002, pp. 199-215.\n\n[127] S. Kou, Library, MRS Bulletin 28(9) (2003) 674-675.", "start_char_idx": 134591, "end_char_idx": 137723, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "bf9ff556-444c-4f2c-98ff-473ac9cb54e8": {"__data__": {"id_": "bf9ff556-444c-4f2c-98ff-473ac9cb54e8", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "26bce920-1a7e-4fc3-90c7-b891a2e30029", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "a6c9e271d2affe061a761ef9a6216882457b8934ec3d3d53d2754845c62ca158", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "67ea6b1c-83a7-4852-999e-642ba5f783c5", "node_type": "1", "metadata": {}, "hash": "c5733a0d156d7900a7284ae770465f2f69eebacc9f313443eb146595a230ff8d", "class_name": "RelatedNodeInfo"}}, "text": "[124] M. Kumar, G. Gibbons, A. Das, I. Manna, D. Tanner, H.R. Kotadia, Additive manufacturing of Aluminium alloy 2024 by laser powder bed fusion: Microstructural evolution, defects and mechanical properties, Rapid Prototyping Journal, Under review (2021).\n\n[125] I. Todd, No more tears for metal 3D printing, Nature 549(7672) (2017) 342-343.\n\n[126] G. Mathers, 11 - Weld defects and quality control, in: G. Mathers (Ed.), The Welding of Aluminium and its Alloys, Woodhead Publishing2002, pp. 199-215.\n\n[127] S. Kou, Library, MRS Bulletin 28(9) (2003) 674-675.\n\n[128] S. Kou, A criterion for cracking during solidification, Acta Materialia 88 (2015) 366-374.\n\n[129] H.L. Wei, H.K.D.H. Bhadeshia, S.A. David, T. DebRoy, Harnessing the scientific synergy of welding and additive manufacturing, Science and Technology of Welding and Joining 24(5) (2019) 361-366.\n\n[130] A. Mauduit, S. Pillot, H. Gransac, Study of the suitability of aluminium alloys for additive manufacturing by laser powdered fuion U.P.B. Sci. Bull., Series B, 79(4) (2017).\n\n[131] J.H. Dudas, F.R. Collins, Preventing weld cracks in high strength aluminum alloys, Welding journal 45 (1966) 241-249.\n\n[132] G. Sha, R.K.W. Marceau, X. Gao, B.C. Muddle, S.P. Ringer, Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes, Acta Materialia 59(4) (2011) 1659-1670. [133] H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, X. Zeng, Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy, Scripta Materialia 134 (2017) 6-10.\n\n[134] B. Ahuja, M. Karg, K.Y. Nagulin, M. Schmidt, Fabrication and Characterization of High Strength Al-Cu Alloys Processed Using Laser Beam Melting in Metal Powder Bed, Physics Procedia 56 (2014) 135-146.\n\n[135] M.C.H. Karg, B. Ahuja, S.V. Wiesenmayer, M. Schmidt, S.V. Kuryntsev, Effects of Process Conditions on the Mechanical Behavior of Aluminium Wrought Alloy EN AW-2219 (AICu6Mn) Additively Manufactured by Laser Beam Melting in Powder Bed., Micromachines 8(23) (2017). [136] O. Gharbi, D. Jiang, D.R. Feenstra, S.K. Kairy, Y. Wu, C.R. Hutchinson, N. Birbilis, On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting, Corrosion Science 143 (2018) 93-106.\n\n[137] R. Casati, J.N. Lemke, A.Z. Alarcon, M. Vedani, Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting, Metallurgical and Materials Transactions A 48(2) (2017) 575579.\n\n[138] M. Karg, B. Ahuja, S. Kuryntsev, A. Gorunov, M. Schmidt, Processability of high strength Aluminium-Copper alloys AW-2022 and 2024 by Laser Beam Melting in Powder Bed, 2014. [139] R. Martinez, I. Todd, K. Mumtaz, In situ alloying of elemental Al-Cu12 feedstock using selective laser melting, Virtual and Physical Prototyping 14(3) (2019) 242-252.\n\n[140] S. Coeck, M. Bisht, J. Plas, F. Verbist, Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data, Additive Manufacturing 25 (2019) 347-356.", "start_char_idx": 137164, "end_char_idx": 140193, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "67ea6b1c-83a7-4852-999e-642ba5f783c5": {"__data__": {"id_": "67ea6b1c-83a7-4852-999e-642ba5f783c5", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "bf9ff556-444c-4f2c-98ff-473ac9cb54e8", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "85523e0647c819923d7ce16ad6bfb29de61a123ff56256aa3300f54a4c33a6c3", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "4c63ae86-1565-4493-927d-409495ee4a42", "node_type": "1", "metadata": {}, "hash": "aa74db967594bc80f74052f62d9251f6c8226c104f53500c980516274400540e", "class_name": "RelatedNodeInfo"}}, "text": "[138] M. Karg, B. Ahuja, S. Kuryntsev, A. Gorunov, M. Schmidt, Processability of high strength Aluminium-Copper alloys AW-2022 and 2024 by Laser Beam Melting in Powder Bed, 2014. [139] R. Martinez, I. Todd, K. Mumtaz, In situ alloying of elemental Al-Cu12 feedstock using selective laser melting, Virtual and Physical Prototyping 14(3) (2019) 242-252.\n\n[140] S. Coeck, M. Bisht, J. Plas, F. Verbist, Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data, Additive Manufacturing 25 (2019) 347-356.\n\n[141] D. Koutny, D. Palousek, L. Pantelejev, C. Hoeller, R. Pichler, L. Tesicky, J. Kaiser, Influence of Scanning Strategies on Processing of Aluminum Alloy EN AW 2618 Using Selective Laser Melting, Materials 11(2) (2018) 298.\n\n[142] P. Wang, C. Gammer, F. Brenne, K.G. Prashanth, R.G. Mendes, M.H. R\u00fcmmeli, T. Gemming, J. Eckert, S. Scudino, Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting, Materials Science and Engineering: A 711 (2018) 562-570.\n\n[143] C. Brice, R. Shenoy, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 2139 fabricated using additive manufacturing, Materials Science and Engineering: A 648 (2015) 9-14.\n\n[144] P. Wang, L. Deng, K.G. Prashanth, S. Pauly, J. Eckert, S. Scudino, Microstructure and mechanical properties of Al-Cu alloys fabricated by selective laser melting of powder mixtures, Journal of Alloys and Compounds 735 (2018) 2263-2266.\n\n[145] H. Zhao, D.R. White, T. DebRoy, Current issues and problems in laser welding of automotive aluminium alloys, International Materials Reviews 44(6) (1999) 238-266.\n\n[146] J.R. Croteau, S. Griffiths, M.D. Rossell, C. Leinenbach, C. Kenel, V. Jansen, D.N. Seidman, D.C. Dunand, N.Q. Vo, Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting, Acta Materialia 153 (2018) 35-44.\n\n[147] S. Griffiths, M.D. Rossell, J. Croteau, N.Q. Vo, D.C. Dunand, C. Leinenbach, Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy, Materials Characterization 143 (2018) 34-42.\n\n[148] K.V. Yang, Y. Shi, F. Palm, X. Wu, P. Rometsch, Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting, Scripta Materialia 145 (2018) 113-117.\n\n[149] H. Zhang, D. Gu, J. Yang, D. Dai, T. Zhao, C. Hong, A. Gasser, R. Poprawe, Selective laser melting of rare earth element Sc modified aluminum alloy: Thermodynamics of precipitation behavior and its influence on mechanical properties, Additive Manufacturing 23 (2018) 1-12.\n\n[150] R. Li, M. Wang, Z. Li, P. Cao, T. Yuan, H. Zhu, Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms, Acta Materialia 193 (2020) 83-98.\n\n[151] M.H. Khan, A. Das, Z. Li, H.R.", "start_char_idx": 139651, "end_char_idx": 142530, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "4c63ae86-1565-4493-927d-409495ee4a42": {"__data__": {"id_": "4c63ae86-1565-4493-927d-409495ee4a42", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "67ea6b1c-83a7-4852-999e-642ba5f783c5", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "db0760587668b2128e07850639eeb92b1e3352f21ec525bd02e64ed09f6221e7", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "6dd4a79c-b35f-4f6e-919c-11892cf155b0", "node_type": "1", "metadata": {}, "hash": "b9029cf65335f4d583604ea2442873461f59de150a5645292b81d6387a8ab3f1", "class_name": "RelatedNodeInfo"}}, "text": "[149] H. Zhang, D. Gu, J. Yang, D. Dai, T. Zhao, C. Hong, A. Gasser, R. Poprawe, Selective laser melting of rare earth element Sc modified aluminum alloy: Thermodynamics of precipitation behavior and its influence on mechanical properties, Additive Manufacturing 23 (2018) 1-12.\n\n[150] R. Li, M. Wang, Z. Li, P. Cao, T. Yuan, H. Zhu, Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms, Acta Materialia 193 (2020) 83-98.\n\n[151] M.H. Khan, A. Das, Z. Li, H.R. Kotadia, Effects of Fe, Mn, chemical grain refinement and cooling rate on the evolution of Fe intermetallics in a model 6082 Al-alloy, Intermetallics 132 (2021) 107132. [152] A.K. Gupta, D.J. Lloyd, Study of precipitation kinetics in a super purity Al-0.8 Pct Mg-0.9 Pct Si alloy using differential scanning calorimetry, Metallurgical and Materials Transactions A 30(13) (1999) 879-890.\n\n[153] B.A. Fulcher, D.K. Leigh, T.J. Watt, Comparison of AlSi10Mg and Al 6061 Processed Through DMLS, Proc. 25th Solid Free. Fabr. Symp (2014) 404-419.\n\n[154] L.-E. Loh, C.-K. Chua, W.-Y. Yeong, J. Song, M. Mapar, S.-L. Sing, Z.-H. Liu, D.-Q. Zhang, Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061, International Journal of Heat and Mass Transfer 80 (2015) 288-300.\n\n[155] L.E. Loh, Z.H. Liu, D.Q. Zhang, M. Mapar, S.L. Sing, C.K. Chua, W.Y. Yeong, Selective Laser Melting of aluminium alloy using a uniform beam profile, Virtual and Physical Prototyping 9(1) (2014) 11-16.\n\n[156] E. Louvis, P. Fox, C.J. Sutcliffe, Selective laser melting of aluminium components, Journal of Materials Processing Technology 211(2) (2011) 275-284.\n\n[157] Y. Ding, J.A. Mu\u00f1iz-Lerma, M. Trask, S. Chou, A. Walker, M. Brochu, Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys, MRS Bulletin $41(10)$ (2016) 745-751.\n\n[158] L.K. Berg, J. Gj\u00f8nnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg, GP-zones in Al-Zn-Mg alloys and their role in artificial aging, Acta Materialia 49(17) (2001) 3443-3451.\n\n[159] M.L. Montero-Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.-P. Kruth, J. Van Humbeeck, Changing the alloy composition of Al7075 for better processability by selective laser melting, Journal of Materials Processing Technology 238 (2016) 437-445.\n\n[160] A. Aversa, G. Marchese, D. Manfredi, M. Lorusso, F. Calignano, S. Biamino, M. Lombardi, P. Fino, M. Pavese, Laser Powder Bed Fusion of a High Strength Al-Si-Zn-Mg-Cu Alloy, Metals 8(5) (2018) 300.\n\n[161] Y. Otani, Y. Kusaki, K. Itagaki, S. Sasaki, Microstructure and Mechanical Properties of A7075 Alloy with Additional Si Objects Fabricated by Selective Laser Melting, MATERIALS TRANSACTIONS 60(10) (2019) 2143-2150.", "start_char_idx": 141992, "end_char_idx": 144849, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "6dd4a79c-b35f-4f6e-919c-11892cf155b0": {"__data__": {"id_": "6dd4a79c-b35f-4f6e-919c-11892cf155b0", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "4c63ae86-1565-4493-927d-409495ee4a42", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "9f1ff706fc5be34e2395eb134a930aa0b459e326b6fb61c5cee6218b2a925f99", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "aa5111e2-21f9-4544-b49b-ec80d909aff9", "node_type": "1", "metadata": {}, "hash": "b489bb83aebd39d72279e5a0d3abcb76a98d43692f15aa80aedd7847296fb3fd", "class_name": "RelatedNodeInfo"}}, "text": "Kruth, J. Van Humbeeck, Changing the alloy composition of Al7075 for better processability by selective laser melting, Journal of Materials Processing Technology 238 (2016) 437-445.\n\n[160] A. Aversa, G. Marchese, D. Manfredi, M. Lorusso, F. Calignano, S. Biamino, M. Lombardi, P. Fino, M. Pavese, Laser Powder Bed Fusion of a High Strength Al-Si-Zn-Mg-Cu Alloy, Metals 8(5) (2018) 300.\n\n[161] Y. Otani, Y. Kusaki, K. Itagaki, S. Sasaki, Microstructure and Mechanical Properties of A7075 Alloy with Additional Si Objects Fabricated by Selective Laser Melting, MATERIALS TRANSACTIONS 60(10) (2019) 2143-2150.\n\n[162] Y. Otani, S. Sasaki, Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability, Materials Science and Engineering: A 777 (2020) 139079.\n\n[163] T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, X. Zeng, Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode, Materials \\& Design 135 (2017) 257-266.\n\n[164] N. Kaufmann, M. Imran, T.M. Wischeropp, C. Emmelmann, S. Siddique, F. Walther, Influence of Process Parameters on the Quality of Aluminium Alloy EN AW 7075 Using Selective Laser Melting (SLM), Physics Procedia 83 (2016) 918-926.\n\n[165] C.M. Gourlay, A.K. Dahle, Dilatant shear bands in solidifying metals, Nature 445(7123) (2007) 70-73.\n\n[166] F.J. Humphreys, P.B. Prangnell, R. Priestner, Fine-grained alloys by thermomechanical processing, Current Opinion in Solid State and Materials Science 5(1) (2001) 15-21.\n\n[167] B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, International Materials Reviews 47(1) (2002) 3-29.\n\n[168] M. Easton, D. StJohn, Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms - a review of the literature, Metallurgical and Materials Transactions A 30(6) (1999) 16131623.\n\n[169] D. Turnbull, B. Vonnegut, Nucleation Catalysis, Industrial \\& Engineering Chemistry 44(6) (1952) 1292-1298.\n\n[170] A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B, Acta Materialia 48(11) (2000) 28232835.\n\n[171] W.C. Winegard, B. Chalmers, Supercooling and dendritic freezing in alloys, Transactions of American Society for Metals 46 (1954) 1214-1224.\n\n[172] D.H. StJohn, M. Qian, M.A. Easton, P. Cao, The Interdependence Theory: The relationship between grain formation and nucleant selection, Acta Materialia 59(12) (2011) 4907-4921.\n\n[173] M.A. Easton, D.H. StJohn, A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles, Acta Materialia 49(10) (2001) 1867-1878.\n\n[174] X.B. Qi, Y. Chen, X.H. Kang, D.Z. Li, Q. Du, An analytical approach for predicting as-cast grain size of inoculated aluminum alloys, Acta Materialia 99 (2015) 337-346.\n\n[175] Y.K. Xiao, Z.Y. Bian, Y. Wu, G. Ji, Y.Q.", "start_char_idx": 144243, "end_char_idx": 147289, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "aa5111e2-21f9-4544-b49b-ec80d909aff9": {"__data__": {"id_": "aa5111e2-21f9-4544-b49b-ec80d909aff9", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "6dd4a79c-b35f-4f6e-919c-11892cf155b0", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "a3d8ba22cfeb322315580c10d06cba50a3a18420cde38930c904062c0b261ddc", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "4f098efd-d838-4081-9694-e903a81a695d", "node_type": "1", "metadata": {}, "hash": "0007ea7b52c7afbe604deaa93dddc1a4fc6377905daee6dc9472d0c71ca1117e", "class_name": "RelatedNodeInfo"}}, "text": "StJohn, M. Qian, M.A. Easton, P. Cao, The Interdependence Theory: The relationship between grain formation and nucleant selection, Acta Materialia 59(12) (2011) 4907-4921.\n\n[173] M.A. Easton, D.H. StJohn, A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles, Acta Materialia 49(10) (2001) 1867-1878.\n\n[174] X.B. Qi, Y. Chen, X.H. Kang, D.Z. Li, Q. Du, An analytical approach for predicting as-cast grain size of inoculated aluminum alloys, Acta Materialia 99 (2015) 337-346.\n\n[175] Y.K. Xiao, Z.Y. Bian, Y. Wu, G. Ji, Y.Q. Li, M.J. Li, Q. Lian, Z. Chen, A. Addad, H.W. Wang, Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting, Journal of Alloys and Compounds 798 (2019) 644-655.\n\n[176] G. A.L., C. P.S., M. M.W., S. W., S. P., S. J.A., T. A., Grain Refinement of Aluminium Alloys by Inoculation, Advanced Engineering Materials 5(1-2) (2003) 81-91.\n\n[177] D. Carluccio, M.J. Bermingham, Y. Zhang, D.H. StJohn, K. Yang, P.A. Rometsch, X. Wu, M.S. Dargusch, Grain refinement of laser remelted Al-7Si and 6061 aluminium alloys with Tibor ${ }^{\\circledR}$ and scandium additions, Journal of Manufacturing Processes 35 (2018) 715-720.\n\n[178] P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, S. Scudino, A heat treatable TiB2/Al3.5Cu-1.5Mg-1Si composite fabricated by selective laser melting: Microstructure, heat treatment and mechanical properties, Composites Part B: Engineering 147 (2018) 162-168.\n\n[179] X. Wen, Q. Wang, Q. Mu, N. Kang, S. Sui, H. Yang, X. Lin, W. Huang, Laser solid forming additive manufacturing TiB2 reinforced 2024Al composite: Microstructure and mechanical properties, Materials Science and Engineering: A 745 (2019) 319-325.\n\n[180] Q. Tan, Y. Yin, Z. Fan, J. Zhang, Y. Liu, M.-X. Zhang, Uncovering the roles of LaB6-nanoparticle inoculant in the AISi10Mg alloy fabricated via selective laser melting, Materials Science and Engineering: A 800 (2021) 140365.\n\n[181] Q. Tan, J. Zhang, N. Mo, Z. Fan, Y. Yin, M. Bermingham, Y. Liu, H. Huang, M.-X. Zhang, A novel method to 3D-print fine-grained AISi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles, Additive Manufacturing 32 (2020) 101034.\n\n[182] F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.-X. Zhang, Revisiting the role of peritectics in grain refinement of Al alloys, Acta Materialia 61(1) (2013) 360-370.\n\n[183] X. Nie, H. Zhang, H. Zhu, Z. Hu, L. Ke, X. Zeng, Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted $\\mathrm{Zr}$ modified Al-4.24Cu-1.97Mg0.56Mn alloys, Journal of Alloys and Compounds 764 (2018) 977-986.\n\n[184] J. R\u00f8yset, N. Ryum, Scandium in aluminium alloys, International Materials Reviews 50(1) (2005) 19-44.", "start_char_idx": 146711, "end_char_idx": 149516, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "4f098efd-d838-4081-9694-e903a81a695d": {"__data__": {"id_": "4f098efd-d838-4081-9694-e903a81a695d", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "aa5111e2-21f9-4544-b49b-ec80d909aff9", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "36ae3064e35bddc2540992ec8b13bc13215b34bae19763fb900af57caaff3c18", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "5a068710-18a1-43bd-9de9-c6980b846d60", "node_type": "1", "metadata": {}, "hash": "8c11903a1c6b7648a167285a28ec4c81c17ffe9943bc3e160f82a65620e6cb18", "class_name": "RelatedNodeInfo"}}, "text": "[182] F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.-X. Zhang, Revisiting the role of peritectics in grain refinement of Al alloys, Acta Materialia 61(1) (2013) 360-370.\n\n[183] X. Nie, H. Zhang, H. Zhu, Z. Hu, L. Ke, X. Zeng, Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted $\\mathrm{Zr}$ modified Al-4.24Cu-1.97Mg0.56Mn alloys, Journal of Alloys and Compounds 764 (2018) 977-986.\n\n[184] J. R\u00f8yset, N. Ryum, Scandium in aluminium alloys, International Materials Reviews 50(1) (2005) 19-44.\n\n[185] L. Zhou, H. Pan, H. Hyer, S. Park, Y. Bai, B. McWilliams, K. Cho, Y. Sohn, Microstructure and tensile property of a novel AIZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion, Scripta Materialia 158 (2019) 24-28.\n\n[186] T. Yuan, S. Kou, Z. Luo, Grain refining by ultrasonic stirring of the weld pool, Acta Materialia 106 (2016) 144-154.\n\n[187] S. Kou, Y. Le, Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy, Metallurgical Transactions A 16(7) (1985) 1345-1352.\n\n[188] Y. Zhang, Y. Guo, Y. Chen, Y. Cao, H. Qi, S. Yang, Microstructure and Mechanical Properties of Al-12Si Alloys Fabricated by Ultrasonic-Assisted Laser Metal Deposition, Materials 13(1) (2020) 126. [189] C.J. Todaro, M.A. Easton, D. Qiu, D. Zhang, M.J. Bermingham, E.W. Lui, M. Brandt, D.H. StJohn, M. Qian, Grain structure control during metal 3D printing by high-intensity ultrasound, Nature Communications 11(1) (2020) 142.\n\n[190] M. Gremaud, D.R. Allen, M. Rappaz, J.H. Perepezko, The development of nucleation controlled microstructures during laser treatment of AISi alloys, Acta Materialia 44(7) (1996) 2669-2681.\n\n[191] J.H. Tan, W.L.E. Wong, K.W. Dalgarno, An overview of powder granulometry on feedstock and part performance in the selective laser melting process, Additive Manufacturing 18 (2017) 228-255. [192] H.H. Zhu, J.Y.H. Fuh, L. Lu, The influence of powder apparent density on the density in direct laser-sintered metallic parts, International Journal of Machine Tools and Manufacture 47(2) (2007) 294-298.\n\n[193] A.B. Spierings, M. Voegtlin, T. Bauer, K. Wegener, Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing, Progress in Additive Manufacturing 1(1) (2016) 9-20.\n\n[194] A. Popovich, V. Sufiiarov, Metal Powder Additive Manufacturing, New Trends 3D Print (2016). [195] S. Vock, B. Kl\u00f6den, A. Kirchner, T. Wei\u00dfg\u00e4rber, B. Kieback, Powders for powder bed fusion: a review, Progress in Additive Manufacturing 4(4) (2019) 383-397.\n\n[196] R.J. Hebert, Viewpoint: metallurgical aspects of powder bed metal additive manufacturing, Journal of Materials Science 51(3) (2016) 1165-1175.\n\n[197] C.C. Furnas, Grading Aggregates - I. - Mathematical Relations for Beds of Broken Solids of Maximum Density, Industrial \\& Engineering Chemistry 23(9) (1931) 1052-1058.\n\n[198] A.E.R.", "start_char_idx": 148965, "end_char_idx": 151904, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "5a068710-18a1-43bd-9de9-c6980b846d60": {"__data__": {"id_": "5a068710-18a1-43bd-9de9-c6980b846d60", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "4f098efd-d838-4081-9694-e903a81a695d", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "c093bfbcf8485236685367a880f9e13d19ac11e8923c0ac9f66e07df60efdb8a", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "c25cba29-6ec1-4d72-8927-70c5edbcb6aa", "node_type": "1", "metadata": {}, "hash": "c71215f59f976132d97fc0c7be525018029ed404c954a08bb37b0963331812f8", "class_name": "RelatedNodeInfo"}}, "text": "[194] A. Popovich, V. Sufiiarov, Metal Powder Additive Manufacturing, New Trends 3D Print (2016). [195] S. Vock, B. Kl\u00f6den, A. Kirchner, T. Wei\u00dfg\u00e4rber, B. Kieback, Powders for powder bed fusion: a review, Progress in Additive Manufacturing 4(4) (2019) 383-397.\n\n[196] R.J. Hebert, Viewpoint: metallurgical aspects of powder bed metal additive manufacturing, Journal of Materials Science 51(3) (2016) 1165-1175.\n\n[197] C.C. Furnas, Grading Aggregates - I. - Mathematical Relations for Beds of Broken Solids of Maximum Density, Industrial \\& Engineering Chemistry 23(9) (1931) 1052-1058.\n\n[198] A.E.R. Westman, THE PACKING OF PARTICLES: EMPIRICAL EQUATIONS FOR INTERMEDIATE DIAMETER RATIOS*, Journal of the American Ceramic Society 19(1-12) (1936) 127-129.\n\n[199] R.K. McGEARY, Mechanical Packing of Spherical Particles, Journal of the American Ceramic Society 44(10) (1961) 513-522.\n\n[200] E. Olatunde Olakanmi, W. Dalgarno Kenneth, F. Cochrane Robert, Laser sintering of blended AlSi powders, Rapid Prototyping Journal 18(2) (2012) 109-119.\n\n[201] J.A. Mu\u00f1iz-Lerma, A. Nommeots-Nomm, K.E. Waters, M. Brochu, A Comprehensive Approach to Powder Feedstock Characterization for Powder Bed Fusion Additive Manufacturing: A Case Study on AlSi7Mg, Materials (Basel) 11(12) (2018).\n\n[202] A. Strondl, O. Lyckfeldt, H. Brodin, U. Ackelid, Characterization and Control of Powder Properties for Additive Manufacturing, JOM 67(3) (2015) 549-554.\n\n[203] J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson, M.A. Peltz, Characterization of Metal Powders Used for Additive Manufacturing, J Res Natl Inst Stand Technol 119 (2014) 460-493.\n\n[204] L.J. Jallo, M. Schoenitz, E.L. Dreizin, R.N. Dave, C.E. Johnson, The effect of surface modification of aluminum powder on its flowability, combustion and reactivity, Powder Technology 204(1) (2010) 63-70.\n\n[205] Front Matter, Fundamentals of Refractory Technology2006, pp. i-vii.\n\n[206] A. Hodgson, S. Haq, Water adsorption and the wetting of metal surfaces, Surface Science Reports 64(9) (2009) 381-451.\n\n[207] J.M. Oh, B.G. Lee, S.W. Cho, S.W. Lee, G.S. Choi, J.W. Lim, Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V, Metals and Materials International 17(5) (2011) 733736.\n\n[208] Z. Hu, H. Zhu, X. Nie, C. Zhang, H. Zhang, X. Zeng, On the role of atmospheric oxygen into mechanical properties and fracture behavior of selective laser melted AlCu5MnCdVA, Materials \\& Design 150 (2018) 18-27.\n\n[209] V. Karde, C. Ghoroi, Fine powder flow under humid environmental conditions from the perspective of surface energy, International Journal of Pharmaceutics 485(1) (2015) 192-201.", "start_char_idx": 151305, "end_char_idx": 153971, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "c25cba29-6ec1-4d72-8927-70c5edbcb6aa": {"__data__": {"id_": "c25cba29-6ec1-4d72-8927-70c5edbcb6aa", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "5a068710-18a1-43bd-9de9-c6980b846d60", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "04ccc347e62f0f1cffc3eb9da4f2c73e82f849b97c3a0d580aac2dc8e723f96a", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "670fae95-1489-43df-86bc-26b65555b40a", "node_type": "1", "metadata": {}, "hash": "f7ddaf2c18f40ff797a0dbc69f90518795b29dbf1429997f8fb72016c909200d", "class_name": "RelatedNodeInfo"}}, "text": "[207] J.M. Oh, B.G. Lee, S.W. Cho, S.W. Lee, G.S. Choi, J.W. Lim, Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V, Metals and Materials International 17(5) (2011) 733736.\n\n[208] Z. Hu, H. Zhu, X. Nie, C. Zhang, H. Zhang, X. Zeng, On the role of atmospheric oxygen into mechanical properties and fracture behavior of selective laser melted AlCu5MnCdVA, Materials \\& Design 150 (2018) 18-27.\n\n[209] V. Karde, C. Ghoroi, Fine powder flow under humid environmental conditions from the perspective of surface energy, International Journal of Pharmaceutics 485(1) (2015) 192-201.\n\n\n\\end{document}\r\n\\documentclass[10pt]{article}\n\\usepackage[utf8]{inputenc}\n\\usepackage[T1]{fontenc}\n\\usepackage{amsmath}\n\\usepackage{amsfonts}\n\\usepackage{amssymb}\n\\usepackage[version=4]{mhchem}\n\\usepackage{stmaryrd}\n\\usepackage{hyperref}\n\\hypersetup{colorlinks=true, linkcolor=blue, filecolor=magenta, urlcolor=cyan,}\n\\urlstyle{same}\n\\usepackage{graphicx}\n\\usepackage[export]{adjustbox}\n\\graphicspath{ {./images/} }\n\\usepackage{multirow}\n\n\\title{High Strength Aluminium Alloys in Laser-Based Powder Bed Fusion - a Review }\n\n\n\\author{Julie Langedahl Leirmo, ${ }^{\\mathrm{a}, *}$\\\\\n${ }^{a}$ Department of Manufacturing and Civil Engineering, NTNU - Norwegian University of Science and Technology, Teknologiveien 22, 2815 Gj\u00f8vik, Norway\\\\\n*Corresponding author. Tel.: +47 48202281.E-mail address: julie.1.leirmo@ntnu.no}\n\\date{}\n\n\n\\begin{document}\n\\maketitle\n\n\n\\begin{abstract}\nDespite the difficulties of processing high strength aluminium alloys in laser-powder bed fusion additive manufacturing, there is a growing interest in these types of alloys. In this paper, a brief literature review is presented, aiming to give an overview of different approaches to enable laser-powder bed fusion additive manufacturing of high strength aluminium alloys in the 2xxx and 7xxx series. Relevant literature was collected and analysed. The analysis found that adjusting the scan speed is the most investigated approach for aluminium alloys in both the $2 \\mathrm{xxx}$ and $7 \\mathrm{xxx}$ series. Layer thickness is the least investigated approach, and never investigated for alloys in the 7xxx series.\n\\end{abstract}\n\n(C) 2021 The Authors. Published by Elsevier B.V.\n\nThis is an open access article under the CC BY-NC-ND license (\\href{https://creativecommons.org/licenses/by-nc-nd/4.0}{https://creativecommons.org/licenses/by-nc-nd/4.0})\n\nPeer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System\n\nKeywords: Additive Manufacturing; Powder Bed Fusion; Aluminium\n\n\\section*{1. Introduction}\nThere has been a growing interest in additive manufacturing $(\\mathrm{AM})$ of aluminium (Al) in recent years in various industries such as automotive and aerospace. Low weight combined with relatively high strength makes $\\mathrm{Al}$ popular material. In combination with AM technology, parts can become even lighter while still obtaining, or even enhance the required strength and mechanical properties compared with the cast counterpart [1]. However, $\\mathrm{Al}$ in $\\mathrm{AM}$ and especially laserpowder bed fusion (LPBF) faces challenges due to the nature of $\\mathrm{Al}$ and the LPBF technology. Al powder has high reflectivity and low laser absorption and is therefore difficult to melt with a laser, which makes it difficult to produce parts with satisfying quality [1-4].\n\nSeveral investigations have been performed regarding $\\mathrm{Al}$ in LPBF, and in recent years there has been a particular interest for high strength alloys Al alloys in LPBF. In the current study, literature on the processability of high strength $\\mathrm{Al}$ alloys in the $2 \\mathrm{xxx}$ and $7 \\mathrm{xxx}$ series has been collected and analysed.", "start_char_idx": 153363, "end_char_idx": 157153, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "670fae95-1489-43df-86bc-26b65555b40a": {"__data__": {"id_": "670fae95-1489-43df-86bc-26b65555b40a", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "c25cba29-6ec1-4d72-8927-70c5edbcb6aa", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "ccb8fd311f12d7ecb694c81f42f3b1320e8cd47d4080ef7c67e245fef1c142d8", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "57838dbe-47e5-4e43-ba29-6bf178028ca3", "node_type": "1", "metadata": {}, "hash": "55abea992318289d34d4668ef6210c8a4529b15bbbe776c42dd30510e51a840b", "class_name": "RelatedNodeInfo"}}, "text": "In combination with AM technology, parts can become even lighter while still obtaining, or even enhance the required strength and mechanical properties compared with the cast counterpart [1]. However, $\\mathrm{Al}$ in $\\mathrm{AM}$ and especially laserpowder bed fusion (LPBF) faces challenges due to the nature of $\\mathrm{Al}$ and the LPBF technology. Al powder has high reflectivity and low laser absorption and is therefore difficult to melt with a laser, which makes it difficult to produce parts with satisfying quality [1-4].\n\nSeveral investigations have been performed regarding $\\mathrm{Al}$ in LPBF, and in recent years there has been a particular interest for high strength alloys Al alloys in LPBF. In the current study, literature on the processability of high strength $\\mathrm{Al}$ alloys in the $2 \\mathrm{xxx}$ and $7 \\mathrm{xxx}$ series has been collected and analysed. The aim is to give a brief overview of the current trends in research for the successful production of high strength Al parts with LPBF.\n\nA brief theoretical background is given in the next section before the methodology is described in section 3. The results are presented in section 4 and discussed thereafter. Finally, conclusions and proposed future work is presented in section 6.\n\n\\section*{2. Theoretical background}\n\\subsection*{2.1. Additive manufacturing}\nISO/ASTM 52900:2015(E) [5] defines AM as a \"process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing and formative manufacturing methodologies.\" The interest in AM is predominantly due to the possibility to produce lightweight parts with complex geometries that cannot be obtained with traditional technologies $[1,6]$. The possibility to produce complex parts also enables the fabrication of parts in one piece whereas conventional technologies would yield several components to be assembled [7].\n\n\\subsection*{2.2. Powder bed fusion}\nAccording to ISO/ASTM 52900:2015(E) [5], PBF is an \"additive manufacturing process in which thermal energy selectively fuses regions of a powder bed\". PBF is separated into subcategories that use different types of energy and is suitable for different types of materials $[8,9]$. In the remainder of this paper, the abbreviation LPBF is used to refer to laser powder bed fusion of metals only. Common for all of the PBF technologies is that a thin layer of powder is deposited onto the build surface whereas the desired areas are fused before another thin powder layer is deposited on top of the previous [10].\n\n\\subsection*{2.3. Laser-powder bed fusion for metals}\nThe build process starts with the deposition of a thin layer of the metal powder which then is scanned with a laser beam to fuse the powder particles. The process is repeated in a layerwise manner until the desired part is formed [11]. The powder in the successive layer must not only be melted but also fused into the former layer to ensure a solid part $[9,12]$. According to Ahuja, et al. [12], a melting depth of three-layer thicknesses is the most suitable.\n\nIn LPBF, the process is conducted in a controlled atmosphere where the build chamber is filled with an inert gas, usually argon $(A r)$, to prevent oxidation [1, 9]. The metal powder particles are fused with a high-power laser beam to form near-net-shape parts that require minimal post-processing $[9,13,14]$. In addition to the possibility of complex parts with little post-processing, LPBF can produce parts with high accuracy compared to other AM techniques [15].\n\n\\subsection*{2.4. Aluminium in additive manufacturing}\nHigh strength combined with low weight is one of the properties that makes $\\mathrm{Al}$ favourable in industries such as automotive and aerospace $[1,16]$. Combined with the possibility of complex geometries and topology optimization, even lighter parts can be produced that still have the required strength, making the technology even more attractive [4, 7, 17]. However, at this point, only a few $\\mathrm{Al}$ alloys can reliably be processed by AM [18]. Mostly Al-Si-Mg alloys and other alloys with Silicon $(\\mathrm{Si})$ as the main alloying element is used in AM because they are relatively easy to melt with a laser beam due to their near-eutectic composition [11, 12]. This composition gives a short solidification range, compared with some high strength $\\mathrm{Al}$ alloys $[12,19,20]$.", "start_char_idx": 156265, "end_char_idx": 160681, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "57838dbe-47e5-4e43-ba29-6bf178028ca3": {"__data__": {"id_": "57838dbe-47e5-4e43-ba29-6bf178028ca3", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "670fae95-1489-43df-86bc-26b65555b40a", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "67af59d97f540c80d9734fd79a1291048ba8935314b546c9485b9200f21dbd6a", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "19bbac30-e545-44ad-a880-86e06b655b46", "node_type": "1", "metadata": {}, "hash": "e86c7df4b868f7d70f08b4aeb2c29404673ca4ab4db2e2a2c1916a8c4272c916", "class_name": "RelatedNodeInfo"}}, "text": "Aluminium in additive manufacturing}\nHigh strength combined with low weight is one of the properties that makes $\\mathrm{Al}$ favourable in industries such as automotive and aerospace $[1,16]$. Combined with the possibility of complex geometries and topology optimization, even lighter parts can be produced that still have the required strength, making the technology even more attractive [4, 7, 17]. However, at this point, only a few $\\mathrm{Al}$ alloys can reliably be processed by AM [18]. Mostly Al-Si-Mg alloys and other alloys with Silicon $(\\mathrm{Si})$ as the main alloying element is used in AM because they are relatively easy to melt with a laser beam due to their near-eutectic composition [11, 12]. This composition gives a short solidification range, compared with some high strength $\\mathrm{Al}$ alloys $[12,19,20]$. Because $\\mathrm{Si}$ is a nonmetallic element, the thermal expansion coefficient is much lower than for metals, and the addition of $\\mathrm{Si}$ can reduce this effect and consequently prevent cracking [15].\n\nOne of the factors that make it hard to additively manufacture $\\mathrm{Al}$ alloys is the high reflectivity of $\\mathrm{Al}$ and its low laser absorption $[1,21,22]$. The poor flowability of the $\\mathrm{Al}$ alloy powder also makes it hard to process with LPBF technology [22]. Another challenge with $\\mathrm{Al}$ in $\\mathrm{AM}$ is that these alloys are prone to hot cracking. The main factor for hot cracking is the chemical composition of the $\\mathrm{Al}$ alloy [23].\n\nIn general, $\\mathrm{Al}$ alloy parts produced by LPBF show a higher hardness than their cast counterparts. It is believed that this is due to the rapid cooling rate found in the LPBF process, which results in a microstructure refinement [24]. The ductility of the $\\mathrm{Al}$ alloys produced by LPBF however, seems to decrease [25].\n\n\\subsection*{2.5. High strength aluminium alloys}\nHigh strength Al alloys in the $2 \\mathrm{xxx}$ and $7 \\mathrm{xxx}$ series are wrought alloys intended for cold-forming processes. Consequently, they easily form defects when exposed to heat from e.g. a laser beam in the LPBF process [15].\n\nSome of the main issues are that these alloys are prone to solidification cracking, liquid cracking, and hot cracking. Moreover, some of the alloying elements in these alloys, such as $\\mathrm{Zn}, \\mathrm{Mg}$, and $\\mathrm{Li}$, easily evaporate in the process and are therefore not very processable by LPBF $[22-24,26]$. Evaporation of these alloying elements can reduce metallurgical integrity [23].\n\n\\subsection*{2.5.1. $2 x x x$ series alloys}\nThe $\\mathrm{Al}$ alloys in the $2 \\mathrm{xxx}$ series have copper $(\\mathrm{Cu})$ as the main alloying element besides Al. Al-Cu alloys in this series are not suitable for welding, hence challenging to produce by LPBF [17]. They are prone to hot cracking, which is connected to the solidification interval [17]. However, these Al-Cu alloys are ductile and therefore reduces the stress peaks which results in predicted plastic deformation rather than failure [27].\n\n\\subsection*{2.5.2. $7 x x x$ series alloys}\n$\\mathrm{Al}$ alloys in the $7 \\mathrm{xxx}$ series have Zink $(\\mathrm{Zn})$ as their major alloying element [28]. While all 7xxx alloys are prone to hot cracking, $\\mathrm{Al} 7075$ is found to be especially susceptible when used in LPBF $[15,29]$. The 7xxx alloys are also not weldable because they are prone to liquidation cracking. This occurs due to a thin liquid film at the boundaries of the grains, which cannot follow the solidification shrinkage [26].\n\n\\section*{3. Methodology}\nThe literature was collected through searches in online search engines and databases such as Google Scholar and Web of Science. A total of 27 papers were collected in this study, 16 regarding $2 \\mathrm{xxx}$ series alloys and 11 regarding $7 \\mathrm{xxx}$ series alloys. The investigated approaches can be divided into three different categories as shown in Figure 1, namely additives, process parameters, and heat treatment.", "start_char_idx": 159845, "end_char_idx": 163877, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "19bbac30-e545-44ad-a880-86e06b655b46": {"__data__": {"id_": "19bbac30-e545-44ad-a880-86e06b655b46", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "57838dbe-47e5-4e43-ba29-6bf178028ca3", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "fb1b7a3993ff5c904d37c3e0cc9d29f601ea8f9dd457394a0bb11d8d20d33772", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "23f2d394-6ec9-442b-9a34-994f5189f86d", "node_type": "1", "metadata": {}, "hash": "dea81e5027155787735b01636e89780609f51439c07455ecc6d5f697d2558d57", "class_name": "RelatedNodeInfo"}}, "text": "While all 7xxx alloys are prone to hot cracking, $\\mathrm{Al} 7075$ is found to be especially susceptible when used in LPBF $[15,29]$. The 7xxx alloys are also not weldable because they are prone to liquidation cracking. This occurs due to a thin liquid film at the boundaries of the grains, which cannot follow the solidification shrinkage [26].\n\n\\section*{3. Methodology}\nThe literature was collected through searches in online search engines and databases such as Google Scholar and Web of Science. A total of 27 papers were collected in this study, 16 regarding $2 \\mathrm{xxx}$ series alloys and 11 regarding $7 \\mathrm{xxx}$ series alloys. The investigated approaches can be divided into three different categories as shown in Figure 1, namely additives, process parameters, and heat treatment. The category additives contain approaches where new alloying elements are added, the amount of an alloying element is increased, or where an alloy has been mixed with another alloy. The category process parameters contain approaches where process parameters have\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_392391e00aace0077bd8g-2}\n\\end{center}\n\nFig. 1. Approaches investigated in this study\\\\\nbeen adjusted. The category heat treatment contains different heat treatments on LPBF produced parts. Tx includes T1, T2, ..., T10 treatment [30]. Only those who explicitly said they did a Tx treatment are placed in the Tx category, while the rest is placed in the category others. Al alloys specially developed for LPBF are not included in this study, but the interested reader is referred to Aversa, et al. [22] which provides an extensive review on this topic.\n\nIt is known that there is a significant number of papers on the topic that is published in other languages, especially in German. Due to the author's insufficient skillset in this language, they are not included in this study.\n\n\\section*{4. Results}\nThe publishing year for all the collected literature in this study is presented in Figure 2. The first year of publication in this topic was in 2014, and except for 2015, there have been publications every subsequent year. Please note that the number of publications in 2021 only includes publications in January, due to the work being finalised in January of 2021.\n\nTable 1 gives an overview of the number of studies that investigated the different approaches. In general, adjusting process parameters are the most investigated approach. However, these are often adjusted in combination with other approaches. For instance, the effect of adding additives to the $\\mathrm{Al}$ alloy in combination with changing the scan speed has been investigated by many. Of all the process parameters, layer thickness was the least investigated parameter and was investigated in only two studies.\n\nSeven different additives were investigated in the collected literature, which can be seen in Table 2 and Table 3 for $2 \\mathrm{xxx}$ series alloys and 7xxx series alloys respectively. Additionally, Aversa, et al. [26] made a new alloy mix by mixing $50 \\%$ $\\mathrm{Al} 7075$ with $50 \\% \\mathrm{AlSi10Mg}$.\n\nWhile scan speed is a common parameter, an alternative measure was used by Ahuja, et al. [12] and Stopyra, et al. [31] who looked at the point to point distance and exposure time. The scan speed, however, is by far the most investigated parameter, which was investigated in 20 different studies, but it was usually investigated together with other parameters such as laser power or hatch spacing.\n\nOne article mentioned that they did annealing [32], eight performed Tx treatment, while six performed other types of heat treatment that do not fulfil the requirements of any of the Tx treatments.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_392391e00aace0077bd8g-3}\n\\end{center}\n\nFig. 2 Year of publications regarding high strength $\\mathrm{Al}$ alloys\n\n\\section*{4.1. $2 x x x$ series}\nTable 2 shows the different approaches investigated regarding $2 \\mathrm{xxx}$ series alloys in the collected literature. Among these alloys, the scan speed is the most investigated approach, followed by laser power and hatch spacing. As can be seen in Table 2, these parameters are often investigated together, where more than one of the parameters are adjusted in the same experiment.", "start_char_idx": 163077, "end_char_idx": 167398, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "23f2d394-6ec9-442b-9a34-994f5189f86d": {"__data__": {"id_": "23f2d394-6ec9-442b-9a34-994f5189f86d", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "19bbac30-e545-44ad-a880-86e06b655b46", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "43f3330967d2f140ba111ac8054369fc0f52d30979a6058a87213be5e1838c98", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "c697a27b-7995-42e7-8388-6cd361310a57", "node_type": "1", "metadata": {}, "hash": "356d1f9b7b3e268d2c2a2528d7cad06124be940a71eb014fb9f9342940503d26", "class_name": "RelatedNodeInfo"}}, "text": "One article mentioned that they did annealing [32], eight performed Tx treatment, while six performed other types of heat treatment that do not fulfil the requirements of any of the Tx treatments.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_392391e00aace0077bd8g-3}\n\\end{center}\n\nFig. 2 Year of publications regarding high strength $\\mathrm{Al}$ alloys\n\n\\section*{4.1. $2 x x x$ series}\nTable 2 shows the different approaches investigated regarding $2 \\mathrm{xxx}$ series alloys in the collected literature. Among these alloys, the scan speed is the most investigated approach, followed by laser power and hatch spacing. As can be seen in Table 2, these parameters are often investigated together, where more than one of the parameters are adjusted in the same experiment. It is observed that investigations regarding additives generally adjust fewer process parameters.\n\nHatch spacing was investigated in six studies, but always in combination with other parameters. However, they were never investigated in combination with additives. Post heat treatment was performed in eight investigations, whereas five of them explicitly said they did a T6 or T4 treatment.\n\nThe least investigated approach is layer thickness, which was investigated in two studies. In the category Other we find the study [12], that investigated exposure time and point to point distance instead of scan speed.\n\n\\section*{4.2. $7 x x x$ series}\nDifferent approaches investigated for $\\mathrm{Al}$ alloys in the $7 \\mathrm{xxx}$ series is presented in Table 3. The most investigated parameter was scan speed with a total of nine investigations, while the second most investigated approach was additives with seven investigations. The most investigated additive for the $7 \\mathrm{xxx}$ series alloys was Si. Instead of adding one or two alloying elements to the alloy powder, Zhou, et al. [21] created a mix of $50 \\% 7075$ and $50 \\% \\mathrm{AlSi} 10 \\mathrm{Mg}$, which increased the total $\\mathrm{Si}$ $\\mathrm{wt} \\%$ of the alloy composition in the final part.\n\nIn all but one of the studies that investigated scan speed, the laser power was also investigated. The laser power on the other hand was never adjusted without the scan speed also being adjusted. In the study by Qi, et al. [45] however, different defocusing distances was investigated. Post heat treatment was performed in seven studies, where three said explicitly that they performed a T6 treatment. For alloys in the 7xxx series, none investigated the layer thickness.\n\nIt can also be noted that in the studies on alloys in the $7 \\mathrm{xxx}$ series, all but one of the investigated alloys was Al7075 with slightly different notations depending on the standard that was\n\nTable 1.", "start_char_idx": 166603, "end_char_idx": 169351, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "c697a27b-7995-42e7-8388-6cd361310a57": {"__data__": {"id_": "c697a27b-7995-42e7-8388-6cd361310a57", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "23f2d394-6ec9-442b-9a34-994f5189f86d", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "5889237edf420dda74f121dec6cf18aaebde5ae3d94941dabb1997ebead7ccbb", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "59ac3f05-e94b-424b-8fa5-c6e8002bf93f", "node_type": "1", "metadata": {}, "hash": "7d7e72039df0c011cef319188777115f970e98d3a9f59c3c96abe5a9647e0b3f", "class_name": "RelatedNodeInfo"}}, "text": "In all but one of the studies that investigated scan speed, the laser power was also investigated. The laser power on the other hand was never adjusted without the scan speed also being adjusted. In the study by Qi, et al. [45] however, different defocusing distances was investigated. Post heat treatment was performed in seven studies, where three said explicitly that they performed a T6 treatment. For alloys in the 7xxx series, none investigated the layer thickness.\n\nIt can also be noted that in the studies on alloys in the $7 \\mathrm{xxx}$ series, all but one of the investigated alloys was Al7075 with slightly different notations depending on the standard that was\n\nTable 1. Number of investigations of the respective approaches\n\n\\begin{center}\n\\begin{tabular}{llll}\n\\hline\nApproaches & & References & Total \\\\\n\\hline\nAdditives & & $[2,15,18,21,33-38]$ & 10 \\\\\n\\hline\n\\begin{tabular}{l}\nProcess \\\\\nparameters \\\\\n\\end{tabular} & \\begin{tabular}{l}\nLayer- \\\\\nthickness \\\\\n\\end{tabular} & $[39,40]$ & 2 \\\\\n & \\begin{tabular}{l}\nHatch \\\\\nspacing \\\\\n\\end{tabular} & $[12,17,26,31,35,39,41-44]$ & 10 \\\\\n & Scan speed & $[2,15,17,26,29,31,33-37,39-$ & 20 \\\\\n & & $47]$ & 15 \\\\\n\\cline { 2 - 4 }\n & Laser power & $[2,12,15,17,26,29,31,35-37$, & 15 \\\\\n\\hline\n\\multirow{2}{*}{}\\begin{tabular}{ll}\nHeat \\\\\ntreatment \\\\\n\\end{tabular} & Annealing & $[32]$ & 1 \\\\\n\\cline { 2 - 4 }\n & Tx treatment & $[18,21,27,38-40,43,46]$ & 6 \\\\\n\\cline { 2 - 4 }\n & Others & $[2,26,31,35,36,48]$ & 1 \\\\\n\\hline\nOthers & & $[12]$ & 6 \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\nTable 2. Approaches 2xxx series alloys\n\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|c|c|}\n\\hline\n & Alloy & Additives & \\begin{tabular}{l}\nLaser \\\\\npower \\\\\n\\end{tabular} & \\begin{tabular}{c}\nScan \\\\\nspeed \\\\\n\\end{tabular} & \\begin{tabular}{l}\nHatch \\\\\nspacing \\\\\n\\end{tabular} & \\begin{tabular}{c}\nLayer \\\\\nthickness \\\\\n\\end{tabular} & \\begin{tabular}{c}\nHeat \\\\\ntreatment \\\\\n\\end{tabular} & Other \\\\\n\\hline\nNie, et al. [33] & $\\mathrm{Al}-4.24 \\mathrm{Cu}-1.97 \\mathrm{Mg}-0.56 \\mathrm{Mn}$ & $\\mathrm{x}(\\mathrm{Zr})$ & & $\\mathrm{x}$ & & & & \\\\\n\\hline\nAhuja, et al. [12] & AW-2219 and AW-2618 & & $\\mathrm{x}$ & & $\\mathrm{x}$ & & & $x^{*}$ \\\\\n\\hline\nWang, et al. [46] & $\\mathrm{Al}-3.5 \\mathrm{Cu}-1.5 \\mathrm{Mg}-1 \\mathrm{Si}$ & & $\\mathrm{x}$ & $\\mathrm{x}$ & & & $\\mathrm{x}(\\mathrm{T} 6)$ & \\\\\n\\hline\nCasati, et al. [32] & 2618 & & & & & & $\\mathrm{x}$ (annealing) & \\\\\n\\hline\nZhang, et al. [41] & $\\mathrm{Al}-\\mathrm{Cu}-\\mathrm{Mg}$ (close to AA2024) & & & $\\mathrm{x}$ & $\\mathrm{x}$ & & & \\\\\n\\hline\nZhang, et al.", "start_char_idx": 168667, "end_char_idx": 171275, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "59ac3f05-e94b-424b-8fa5-c6e8002bf93f": {"__data__": {"id_": "59ac3f05-e94b-424b-8fa5-c6e8002bf93f", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "c697a27b-7995-42e7-8388-6cd361310a57", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "4e7e2d620bd4c512b8d3bac6af22d81418fa3454d4507ce7ab13bea260bf99f0", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "99cbdec6-e4bb-4473-bd56-40f60b10a7ef", "node_type": "1", "metadata": {}, "hash": "58b201cb5ad475f768c98d913dedc4c4ad044f7630973c03d4b9655a7a0f1833", "class_name": "RelatedNodeInfo"}}, "text": "[46] & $\\mathrm{Al}-3.5 \\mathrm{Cu}-1.5 \\mathrm{Mg}-1 \\mathrm{Si}$ & & $\\mathrm{x}$ & $\\mathrm{x}$ & & & $\\mathrm{x}(\\mathrm{T} 6)$ & \\\\\n\\hline\nCasati, et al. [32] & 2618 & & & & & & $\\mathrm{x}$ (annealing) & \\\\\n\\hline\nZhang, et al. [41] & $\\mathrm{Al}-\\mathrm{Cu}-\\mathrm{Mg}$ (close to AA2024) & & & $\\mathrm{x}$ & $\\mathrm{x}$ & & & \\\\\n\\hline\nZhang, et al. [34] & \\begin{tabular}{l}\n$\\mathrm{Al}-\\mathrm{Cu}-\\mathrm{Mg}(4.24 \\mathrm{Cu}, 1.97 \\mathrm{Mg}$ \\\\\n$0.56 \\mathrm{Mn})$ \\\\\n\\end{tabular} & $\\mathrm{x}(\\mathrm{Zr})$ & & $\\mathrm{x}$ & & & & \\\\\n\\hline\nQi, et al. [42] & 2195 & & & $\\mathrm{x}$ & $\\mathrm{x}$ & & & \\\\\n\\hline\nRasch, et al. [39] & AW-2024 & & $\\mathrm{x}$ & $\\mathrm{x}$ & $\\mathrm{x}$ & $\\mathrm{x}$ & $\\mathrm{x}(\\mathrm{T} 4)$ & \\\\\n\\hline\nKarg, et al. [17] & AW-2022 and 2024 & & $\\mathrm{x}$ & $\\mathrm{x}$ & $\\mathrm{x}$ & & & \\\\\n\\hline\nZhang, et al. [48] & $\\mathrm{Al}-\\mathrm{Cu}-\\mathrm{Mg}$ & & & & & & $\\mathrm{x}$ & \\\\\n\\hline\nKarg, et al. [27] & EN AW-2219 (AlCu6Mn) & & & & & & $\\mathrm{x}(\\mathrm{T} 6)$ & \\\\\n\\hline\n\\begin{tabular}{l}\nRaffeis, et al. \\\\\n$[36]$ \\\\\n\\end{tabular} & AA2099 & \\begin{tabular}{l}\nx (Ti-alumide and \\\\\nAl) \\\\\n\\end{tabular} & $\\mathrm{x}$ & $\\mathrm{x}$ & & & $\\mathrm{x}$ & \\\\\n\\hline\nQi, et al. [40] & 2195 & & & $\\mathrm{x}$ & & $\\mathrm{x}$ & $\\mathrm{x}(\\mathrm{T} 6)$ & \\\\\n\\hline\nTan, et al. [38] & 2024 & $\\mathrm{x}(\\mathrm{Ti})$ & & & & & $\\mathrm{x}(\\mathrm{T} 6)$ & \\\\\n\\hline\nTan, et al. [47] & 2024 & & $\\mathrm{x}$ & $\\mathrm{x}$ & & & & \\\\\n\\hline\nPekok, et al. [44] & AA2024 & & $\\mathrm{x}$ & $\\mathrm{x}$ & $\\mathrm{x}$ & & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\n*Ahuja, et al. [12] looked at time exposure and point to point distance instead of scan speed\n\nfollowed. The only alloy different from A17075 was an AlZnMgScZr alloy, investigated by Zhou, et al. [21].\n\n\\subsection*{5.1. Additives}\n\\section*{5. Discussion}\nThe collected literature indicates that there has been less research on 7xxx series alloys than 2xxx series alloys. For both the series, the scan speed is the most investigated process parameter. This may be because the scan speed is relatively easy to adjust, and a change in scan speed can greatly influence whether the alloy powder is fully melted or not. A high laser power is required to enable full melting of the Al powder, and with limitations in the machine parameters, there is a limit to how high the laser power can be adjusted.", "start_char_idx": 170900, "end_char_idx": 173406, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "99cbdec6-e4bb-4473-bd56-40f60b10a7ef": {"__data__": {"id_": "99cbdec6-e4bb-4473-bd56-40f60b10a7ef", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "59ac3f05-e94b-424b-8fa5-c6e8002bf93f", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "2059b6133b4ac4366c06906251ec48a8cbfa0e0fb40fab3dcce73cec5a743ba6", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "a64cc6cb-e9fc-42ad-b6a9-9b38e045ef86", "node_type": "1", "metadata": {}, "hash": "928aae68894a544c5ccfda42cb9666e268cfafd70b1003158dc01a70cc561dbc", "class_name": "RelatedNodeInfo"}}, "text": "[12] looked at time exposure and point to point distance instead of scan speed\n\nfollowed. The only alloy different from A17075 was an AlZnMgScZr alloy, investigated by Zhou, et al. [21].\n\n\\subsection*{5.1. Additives}\n\\section*{5. Discussion}\nThe collected literature indicates that there has been less research on 7xxx series alloys than 2xxx series alloys. For both the series, the scan speed is the most investigated process parameter. This may be because the scan speed is relatively easy to adjust, and a change in scan speed can greatly influence whether the alloy powder is fully melted or not. A high laser power is required to enable full melting of the Al powder, and with limitations in the machine parameters, there is a limit to how high the laser power can be adjusted. By reducing the scan speed, the volumetric energy density will increase which in turn can ensure full melting of the powder. However, by increasing the volumetric energy density, some elements with a low melting point can evaporate.\n\nOf the collected literature, among the 7xxx series alloys investigated, all but one was Al7075. This indicates that this alloy is of great interest within AM. This can be due to the highly regarded properties of this specific alloy.\n\nThe amount of an alloying element added into an alloy can change the composition of the alloy to the extent where it can no longer be categorised as the original alloy. When additional elements are added, the new composition does not necessarily meet the specific alloy requirements of the initial composition. Therefore, the new alloy blend may not qualify as an existing alloy but is rather considered a new alloy. This is closely related to the issue of alloying elements evaporating during the LPBF process. If a significant amount of an alloying element evaporates, the alloy composition in the final part might not qualify as the initial alloy. In the study by Kaufmann, et al. [29] the chemical composition of the LPBF produced parts differed from the composition of the $\\mathrm{Al}$ alloy powder. This results in the amount of both $\\mathrm{Zn}$ and $\\mathrm{Si}$ no longer be inside the $\\mathrm{min} / \\mathrm{max}$ requirement for AW-7075, according to NS-EN 573-3:2019. Kaufmann, et al. [29] concludes that it must be either an evaluation of trade-off or a different alloy composition is needed to compensate for the loss of alloying elements.\n\nInstead of adding one or two alloying elements to the alloy powder, Zhou, et al. [21] created a mix of 50\\% Al7075 and\n\nTable 3. Approaches 7xxx series alloys\n\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|c|c|}\n\\hline\n & Alloy & Additives & \\begin{tabular}{c}\nLaser \\\\\npower \\\\\n\\end{tabular} & \\begin{tabular}{c}\nScan \\\\\nspeed \\\\\n\\end{tabular} & \\begin{tabular}{l}\nHatch \\\\\nspacing \\\\\n\\end{tabular} & \\begin{tabular}{c}\nLayer \\\\\nthickness \\\\\n\\end{tabular} & \\begin{tabular}{c}\nHeat \\\\\ntreatment \\\\\n\\end{tabular} & Other \\\\\n\\hline\nMontero-Sistiaga, et al. [2] & $\\mathrm{A} 17075$ & $\\mathrm{x}(\\mathrm{Si})$ & $\\mathrm{x}$ & $\\mathrm{x}$ & & & $\\mathrm{x}$ & \\\\\n\\hline\nMartin, et al. [18] & $\\mathrm{A} 17075$ & $\\mathrm{x}(\\mathrm{Zr})$ & & & & & $\\mathrm{x}(\\mathrm{T} 6)$ & \\\\\n\\hline\nQi, et al. [45] & $\\mathrm{A} 17075$ & & & $\\mathrm{x}$ & & & & $x^{*}$ \\\\\n\\hline\nAversa, et al. [26] & 7075 & $\\mathrm{x}(\\mathrm{AlSi} 10 \\mathrm{Mg}) * *$ & $\\mathrm{x}$ & $\\mathrm{x}$ & $\\mathrm{x}$ & & $\\mathrm{x}$ & \\\\\n\\hline\nKaufmann, et al.", "start_char_idx": 172624, "end_char_idx": 176084, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "a64cc6cb-e9fc-42ad-b6a9-9b38e045ef86": {"__data__": {"id_": "a64cc6cb-e9fc-42ad-b6a9-9b38e045ef86", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "99cbdec6-e4bb-4473-bd56-40f60b10a7ef", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "b30769236dd648d6579c4755e7007dbbf622679acef0675aff686e53a9356857", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "0be36d74-8168-40a6-9b2c-86e585ca0a7c", "node_type": "1", "metadata": {}, "hash": "76e778054e05d6bfb95af64e2a47cdf278ac131a71450f1dca8e9f28ac6d748b", "class_name": "RelatedNodeInfo"}}, "text": "[18] & $\\mathrm{A} 17075$ & $\\mathrm{x}(\\mathrm{Zr})$ & & & & & $\\mathrm{x}(\\mathrm{T} 6)$ & \\\\\n\\hline\nQi, et al. [45] & $\\mathrm{A} 17075$ & & & $\\mathrm{x}$ & & & & $x^{*}$ \\\\\n\\hline\nAversa, et al. [26] & 7075 & $\\mathrm{x}(\\mathrm{AlSi} 10 \\mathrm{Mg}) * *$ & $\\mathrm{x}$ & $\\mathrm{x}$ & $\\mathrm{x}$ & & $\\mathrm{x}$ & \\\\\n\\hline\nKaufmann, et al. [29] & AW 7075 & & $\\mathrm{x}$ & $\\mathrm{x}$ & & & & \\\\\n\\hline\nZhou, et al. [21] & $\\mathrm{AlZnMgScZr}$ & $\\mathrm{x}(\\mathrm{Sc}+\\mathrm{Zr})$ & & & & & $\\mathrm{x}(\\mathrm{T} 6)$ & \\\\\n\\hline\nOtani and Sasaki [15] & 7075 & $x(\\mathrm{Si})$ & $\\mathrm{x}$ & $\\mathrm{x}$ & & & & \\\\\n\\hline\nWu, et al. [37] & $\\mathrm{A} 17075$ & $\\mathrm{x}$ (TiN nanoparticles) & $\\mathrm{x}$ & $\\mathrm{x}$ & & & & \\\\\n\\hline\nStopyra, et al. [31] & AA 7075 & & $\\mathrm{x}$ & $\\mathrm{x}^{* * *}$ & $\\mathrm{x}$ & & $\\mathrm{x}$ & \\\\\n\\hline\nLi, et al. [35] & AL7075 & $\\mathrm{x}(\\mathrm{Si})$ & $\\mathrm{x}$ & $\\mathrm{x}$ & $\\mathrm{x}$ & & $\\mathrm{x}$ & \\\\\n\\hline\nO E, et al. [43] & $\\mathrm{Al7075}$ & & $\\mathrm{x}$ & $\\mathrm{x}$ & $\\mathrm{x}$ & & $\\mathrm{X}(\\mathrm{T} 6)$ & \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\ntime exposure and point to point distance\\\\\n$50 \\% \\mathrm{AlSi} 10 \\mathrm{Mg}$, which will drastically change the alloy composition in the final part. It can, however, be debated whether this should be regarded as an additive or rather a new alloy or alloy blend. Only half of the alloy is now A17075 which belongs to the wrought alloy $7 \\mathrm{xxx}$ series, and the other half is $\\mathrm{AlSi10Mg}$ which is a cast alloy. Therefore, it can also be questioned if the new alloy blend qualifies as a high strength alloy and if so, if it would belong to the $7 \\mathrm{xxx}$ series.\n\n\\subsection*{5.2. Layer thickness}\nIt seems from the collected literature that layer thickness is of least interest, only investigated in two studies, both investigating alloys in the $2 \\mathrm{xxx}$ series. However, the layer thickness can influence the laser power and scan speed required to fully melt the powder. As stated by Ahuja, et al. [12] melting depth of three times the layer thickness, would be the most suitable, and therefore it can be argued that a thinner layer thickness can decrease the required laser power and/or increase the scan speed. However, how thin the powder layer can be, is limited by the particle size of the powder.\n\nAn issue with thinner layers is that the production time might increase. However, higher scan speed can decrease the build time, and it can be assumed that with thinner powder layers, the scan speed can be increased, and still result in fully melting the powder. Also, insufficient melting of powder is an issue that can lead to defects such as pores [36], and with thinner powder layers, it may be easier to fully melt the powder.\n\n\\subsection*{5.3. General notes}\nFigure 2 shows that there is a growing interest in LPBF of high strength alloys, despite the difficulties associated with these alloys. However, there might be more research published that has not been included in this study.", "start_char_idx": 175721, "end_char_idx": 178848, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "0be36d74-8168-40a6-9b2c-86e585ca0a7c": {"__data__": {"id_": "0be36d74-8168-40a6-9b2c-86e585ca0a7c", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "a64cc6cb-e9fc-42ad-b6a9-9b38e045ef86", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "429f4817e3c86fb5a44d9a372517be0f0e2e9e318f12bb30d9d51110c50b6460", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "69b03a7b-29e4-48dc-a94d-69a6fe0c96f7", "node_type": "1", "metadata": {}, "hash": "beee204a5826000509695aade3b080c7fd87268d30530a9e2d3b12c0b9a375a5", "class_name": "RelatedNodeInfo"}}, "text": "However, how thin the powder layer can be, is limited by the particle size of the powder.\n\nAn issue with thinner layers is that the production time might increase. However, higher scan speed can decrease the build time, and it can be assumed that with thinner powder layers, the scan speed can be increased, and still result in fully melting the powder. Also, insufficient melting of powder is an issue that can lead to defects such as pores [36], and with thinner powder layers, it may be easier to fully melt the powder.\n\n\\subsection*{5.3. General notes}\nFigure 2 shows that there is a growing interest in LPBF of high strength alloys, despite the difficulties associated with these alloys. However, there might be more research published that has not been included in this study. Therefore, this overview can be used as an indicator of the current trend, but the numbers cannot be used as an absolute. Also, this study was finalized in January 2021, so the numbers for 2021 are only up to this point and more literature on this topic can be published within this year. However, it is interesting to note that the number of publications in January 2021 is already equal to the number published in 2018. This indicates that there may be an exponential growth in interest in this topic.\n\nAll the reviewed studies report promising results to different extents. Some were able to produce fully dense parts with close to no defects, while others were able to increase the density and reduce the number of defects. However, different approaches can lead to different challenges.\n\nIt is known that more literature on this topic exists in other languages, predominantly German, in which the author lacks a sufficient skillset. Therefore, these are not included in the study, which means that this study does not give a complete picture of what approaches are the most investigated. However, it is intended to give an indicator of the current trends in research of high strength $\\mathrm{Al}$ alloys in the 2xxx and 7xxx series.\n\nThis study is also limited to a subset of approaches selected for this study. This means that there can be other promising approaches that enable successful processing of high strength $\\mathrm{Al}$ alloys that are not considered in this study.\n\n\\section*{6. Conclusion}\nRelevant literature on high strength $\\mathrm{Al}$ alloys in the $2 \\mathrm{xxx}$ and 7xxx series in LPBF has been collected to give an overview of the current state of research on this topic. The different approaches considered in this paper was adding additives to the alloy powder, adjusting the process parameters, (i) laser power, (ii) scan speed, (iii) hatch distance and (iv) layer thickness, as well as heat treatment. Some main conclusions can be drawn from this:\n\n\\begin{enumerate}\n \\item For Al alloys in the $2 \\mathrm{xxx}$ series, scan speed was the most investigated approach. However, it was always investigated in combination with other approaches.\n\n \\item For Al alloys in the 7xxx series, scan speed was the most investigated approach, and laser power being the second most investigated approach.\n\n \\item Layer thickness was investigated in only two studies and was the least investigated approach in the collected literature.\n\n\\end{enumerate}\n\nThere is a significantly larger amount of research efforts towards $\\mathrm{Al}$ alloys in the $2 \\mathrm{xxx}$ series than in the $7 \\mathrm{xxx}$ series. Also, Al7075 was the only alloy investigated in the $7 \\mathrm{xxx}$ series, except for one study. Therefore, more research efforts on $7 \\mathrm{xxx}$ series alloys, especially other alloys than A17575 could be valuable for this field of study.\n\nInsufficient melting of the $\\mathrm{Al}$ alloy powder is an issue in LPBF, and layer thickness may influence this. As this was the least investigated approach, this parameter should be considered in future research efforts.\n\n\\section*{Acknowledgements}\nThe KPN VALUE project at NTNU, co-funded by industry and the Norwegian Research Council.\n\n\\section*{References}\n[1] Aboulkhair NT, Everitt NM, Maskery I, Ashcroft I, Tuck C. Selective laser melting of aluminum alloys. MRS Bull. 2017;42(4):311-9.\n\n[2] Montero-Sistiaga ML, Mertens R, Vrancken B, Wang X, Van Hooreweder B, Kruth J-P, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting. J Mater Process Technol. 2016;238:437-45.", "start_char_idx": 178066, "end_char_idx": 182459, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "69b03a7b-29e4-48dc-a94d-69a6fe0c96f7": {"__data__": {"id_": "69b03a7b-29e4-48dc-a94d-69a6fe0c96f7", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "0be36d74-8168-40a6-9b2c-86e585ca0a7c", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "4c0154cc5296d162099560c56604adcfb1ede69797f7e6c8fe65e4ea5bcef20e", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "dafdd05f-f077-4848-a114-82459c16b0bc", "node_type": "1", "metadata": {}, "hash": "b614b3d5899b44b64ccd577c2f297f55d2b3fe941dd3105a74216d83c1e254a6", "class_name": "RelatedNodeInfo"}}, "text": "Insufficient melting of the $\\mathrm{Al}$ alloy powder is an issue in LPBF, and layer thickness may influence this. As this was the least investigated approach, this parameter should be considered in future research efforts.\n\n\\section*{Acknowledgements}\nThe KPN VALUE project at NTNU, co-funded by industry and the Norwegian Research Council.\n\n\\section*{References}\n[1] Aboulkhair NT, Everitt NM, Maskery I, Ashcroft I, Tuck C. Selective laser melting of aluminum alloys. MRS Bull. 2017;42(4):311-9.\n\n[2] Montero-Sistiaga ML, Mertens R, Vrancken B, Wang X, Van Hooreweder B, Kruth J-P, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting. J Mater Process Technol. 2016;238:437-45.\n\n[3] Buchbinder D, Schleifenbaum H, Heidrich S, Meiners W, B\u00fcltmann J. High Power Selective Laser Melting (HP SLM) of Aluminum Parts. Phys Procedia. 2011;12:271-8.\n\n[4] Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog Mater Sci. 2019;106:1-45.\n\n[5] ISO/ASTM 52900:2015(E). Standard Terminology for Additive Manufacturing - General Principles - Terminology. 2015.\n\n[6] Ding Y, Mu\u00f1iz-Lerma JA, Trask M, Chou S, Walker A, Brochu M. Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys. MRS Bull. 2016;41(10):745-51.\n\n[7] Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann 2016;65(2):737-60.\n\n[8] European Powder Metallurgy Association. Introduction to Additive Manufacturing Technology: A Guide for Designers and Engineers. 2019.\n\n[9] Gibson I. Additive Manufacturing Technologies : 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. 2015.\n\n[10] ISO/ASTM 52911-1:2019. Additive manufacturing \u2014 Design \u2014 Part 1: Laser-based powder bed fusion of metals. 2019.\n\n[11] Bartkowiak K, Ullrich S, Frick T, Schmidt M. New Developments of Laser Processing Aluminium Alloys via Additive Manufacturing Technique. Phys Procedia. 2011;12(1):393-401.\n\n[12] Ahuja B, Karg M, Nagulin KY, Schmidt M. Fabrication and Characterization of High Strength Al-Cu Alloys Processed Using Laser Beam Melting in Metal Powder Bed. Phys Procedia. 2014;56:135-46.\n\n[13] Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf. 2014;1-4:77-86.\n\n[14] King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol. 2014;214(12):2915-25.\n\n[15] Otani Y, Sasaki S. Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability. Mater. Sci. Eng. A. 2020;777:139079.\n\n[16] DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, et al. Additive manufacturing of metallic components - Process, structure and properties. Prog Mater Sci. 2018;92:112-224.\n\n[17] Karg M, Ahuja B, Kuryntsev S, Gorunow A, Schmidt M. Processability of high-strength Aluminium-Copper alloys AW-2022 and AW-2024 by Laser Beam Melting in Powder Bed (LBM). 2014.", "start_char_idx": 181730, "end_char_idx": 185056, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "dafdd05f-f077-4848-a114-82459c16b0bc": {"__data__": {"id_": "dafdd05f-f077-4848-a114-82459c16b0bc", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "69b03a7b-29e4-48dc-a94d-69a6fe0c96f7", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "862e657688f2cc7178aac4a3edda5978a712c3db7c7815f354719a9fa84f64fb", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "9ef9bc3f-9d0b-4187-ac6a-9e86eb2fb0d7", "node_type": "1", "metadata": {}, "hash": "774eb3712009002440d0289b0fde7adba040144c54066bb0db57b2db2cfafcc7", "class_name": "RelatedNodeInfo"}}, "text": "J Mater Process Technol. 2014;214(12):2915-25.\n\n[15] Otani Y, Sasaki S. Effects of the addition of silicon to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability. Mater. Sci. Eng. A. 2020;777:139079.\n\n[16] DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, et al. Additive manufacturing of metallic components - Process, structure and properties. Prog Mater Sci. 2018;92:112-224.\n\n[17] Karg M, Ahuja B, Kuryntsev S, Gorunow A, Schmidt M. Processability of high-strength Aluminium-Copper alloys AW-2022 and AW-2024 by Laser Beam Melting in Powder Bed (LBM). 2014.\n\n[18] Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM. 3D printing of high-strength aluminium alloys. Nature. 2017;549:3659.\n\n[19] Kempen K, Thijs L, Van Humbeeck J, Kruth JP. Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting. Phys Procedia. 2012;39(C):439-46.\n\n[20] Louvis E, Fox P, Sutcliffe CJ. Selective laser melting of aluminium components. J Mater Process Technol. 2011;211(2):275-84.\n\n[21] Zhou L, Pan H, Hyer H, Park S, Bai Y, McWilliams B, et al. Microstructure and tensile property of a novel $\\mathrm{AlZnMgScZr}$ alloy additively manufactured by gas atomization and laser powder bed fusion. Scr Mater. 2019;158:24-8.\n\n[22] Aversa A, Marchese G, Saboori A, Bassini E, Manfredi D, Biamino S, et al. New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review. Materials (Basel). 2019. DOI: 10.3390/ma12071007:119 .\n\n[23] Mauduit A, Pillot S, Gransac H. Study of the suitability of aluminum alloys for additive manufacturing by laser powder-bed fusion. 2017;79(4):219-38\n\n[24] Mertens AI, Delahaye J, Lecomte - Beckers J. Fusion - Based Additive Manufacturing for Processing Aluminum Alloys: State - of - the - Art and Challenges. Adv. Eng. Mater. 2017;19:n/a-n/a.\n\n[25] Suryawanshi J, Prashanth KG, Scudino S, Eckert J, Prakash O, Ramamurty U. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater. 2016;115:285-94.\n\n[26] Aversa A, Marchese G, Manfredi D, Lorusso M, Calignano F, Biamino S, et al. Laser Powder Bed Fusion of a High Strength Al-Si-Zn-Mg-Cu Alloy. Metals. 2018;8(5):300.\n\n[27] Karg MCH, Ahuja B, Wiesenmayer S, Kuryntsev S, Schmidt M. Effects of Process Conditions on the Mechanical Behavior of Aluminium Wrought Alloy EN AW-2219 (AlCu6Mn) Additively Manufactured by Laser Beam Melting in Powder Bed. Micromachines. 2017;8(1):23.\n\n[28] Davis JR. Aluminum and aluminum alloys. Materials Park, OH: ASM International; 1993.\n\n[29] Kaufmann N, Imran M, Wischeropp TM, Emmelmann C, Siddique S, Walther F. Influence of Process Parameters on the Quality of Aluminium Alloy EN AW 7075 Using Selective Laser Melting (SLM). Phys Procedia. 2016;83:918-26.\n\n[30] Standardization IOf. ISO 2107:2007 Aluminium and aluminium alloys Wrought products - Temper designations. 2007.", "start_char_idx": 184427, "end_char_idx": 187377, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "9ef9bc3f-9d0b-4187-ac6a-9e86eb2fb0d7": {"__data__": {"id_": "9ef9bc3f-9d0b-4187-ac6a-9e86eb2fb0d7", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "dafdd05f-f077-4848-a114-82459c16b0bc", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "a4070bf20001dda0b7483d3f5cc29eaf44718e5ba6f4c5a0dc09e75fcfb4a1e3", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "8577b3f2-8d77-4a39-9a02-bd100e91685c", "node_type": "1", "metadata": {}, "hash": "3c582619f2b8f862b98c152d53dbd15e1b1648e5df143b1f0a5c96b37ec0f9e8", "class_name": "RelatedNodeInfo"}}, "text": "Micromachines. 2017;8(1):23.\n\n[28] Davis JR. Aluminum and aluminum alloys. Materials Park, OH: ASM International; 1993.\n\n[29] Kaufmann N, Imran M, Wischeropp TM, Emmelmann C, Siddique S, Walther F. Influence of Process Parameters on the Quality of Aluminium Alloy EN AW 7075 Using Selective Laser Melting (SLM). Phys Procedia. 2016;83:918-26.\n\n[30] Standardization IOf. ISO 2107:2007 Aluminium and aluminium alloys Wrought products - Temper designations. 2007.\n\n[31] Stopyra W, Gruber K, Smolina I, Kurzynowski T, Ku\u017anicka B. Laser powder bed fusion of AA7075 alloy: Influence of process parameters on porosity and hot cracking. Addit Manuf. 2020;35:101270.\\\\\n[32] Casati R, Lemke JN, Alarcon AZ, Vedani M. Aging Behavior of HighStrength Al Alloy 2618 Produced by Selective Laser Melting. Materials Science and Engineering: A. 2017;48(2):575-9.\n\n[33] Nie X, Zhang H, Zhu H, Hu Z, Ke L, Zeng X. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted $\\mathrm{Zr}$ modified Al-4.24Cu-1.97Mg-0.56Mn alloys. J Alloys Compd. 2018;764:977-86.\n\n[34] Zhang H, Zhu H, Nie X, Yin J, Hu Z, Zeng X. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scr Mater. 2017;134:6-10.\n\n[35] Li G, Jadhav SD, Mart\u00edn A, Montero-Sistiaga ML, Soete J, Sebastian MS, et al. Investigation of Solidification and Precipitation Behavior of SiModified 7075 Aluminum Alloy Fabricated by Laser-Based Powder Bed Fusion. Metall Mater Trans A Phys Metall Mater Sci. 2021;52(1):194-210.\n\n[36] Raffeis I, Adjei-Kyeremeh F, Vroomen U, Suwanpinij P, Ewald S, B\u00fchrig-Polazcek A. Investigation of the Lithium-Containing Aluminum Copper Alloy (AA2099) for the Laser Powder Bed Fusion Process [LPBF]: Effects of Process Parameters on Cracks, Porosity, and Microhardness. JOM. 2019;71(4):1543-53.\n\n[37] Wu W, Gao C, Liu Z, Wong K, Xiao Z. Laser powder bed fusion of crackfree TiN/A17075 composites with enhanced mechanical properties. ACS Mater Lett. 2021;282:128625.\n\n[38] Tan Q, Zhang J, Sun Q, Fan Z, Li G, Yin Y, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Mater. 2020;196:1-16.\n\n[39] Rasch M, Heberle J, Dechet MA, Bartels D, Gotterbarm MR, Klein L, et al. Grain Structure Evolution of Al-Cu Alloys in Powder Bed Fusion with Laser Beam for Excellent Mechanical Properties. Materials (Basel). 2019;13(1):82.\n\n[40] Qi Y, Zhang H, Nie X, Hu Z, Zhu H, Zeng X. A high strength Al-Li alloy produced by laser powder bed fusion: Densification, microstructure, and mechanical properties. Addit Manuf. 2020;35:101346.\n\n[41] Zhang H, Zhu H, Qi T, Hu Z, Zeng X. Selective laser melting of high strength $\\mathrm{Al}-\\mathrm{Cu}-\\mathrm{Mg}$ alloys: Processing, microstructure and mechanical properties. Mater. Sci. Eng. A. 2016;og 656:47-54.\n\n[42] Qi Y, Zhang H, Zhu H, Nie X, Zeng X. An Aluminum-Lithium Alloy Produces By Laser Powder Bed Fusion. Solid Freeform Fabrication Symposium. 2019.", "start_char_idx": 186917, "end_char_idx": 189944, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "8577b3f2-8d77-4a39-9a02-bd100e91685c": {"__data__": {"id_": "8577b3f2-8d77-4a39-9a02-bd100e91685c", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "9ef9bc3f-9d0b-4187-ac6a-9e86eb2fb0d7", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "7133704fcea1b0437cf401f3705452d8fcaa19423289842592db999c72ff0ae9", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "3a0a24f3-e769-486b-96e0-de3692a77dab", "node_type": "1", "metadata": {}, "hash": "2dd590d812059d3a257681d92a6ad6beda97e12a47a2c95596b13499cc937e52", "class_name": "RelatedNodeInfo"}}, "text": "Materials (Basel). 2019;13(1):82.\n\n[40] Qi Y, Zhang H, Nie X, Hu Z, Zhu H, Zeng X. A high strength Al-Li alloy produced by laser powder bed fusion: Densification, microstructure, and mechanical properties. Addit Manuf. 2020;35:101346.\n\n[41] Zhang H, Zhu H, Qi T, Hu Z, Zeng X. Selective laser melting of high strength $\\mathrm{Al}-\\mathrm{Cu}-\\mathrm{Mg}$ alloys: Processing, microstructure and mechanical properties. Mater. Sci. Eng. A. 2016;og 656:47-54.\n\n[42] Qi Y, Zhang H, Zhu H, Nie X, Zeng X. An Aluminum-Lithium Alloy Produces By Laser Powder Bed Fusion. Solid Freeform Fabrication Symposium. 2019. DOI, Available at: \\href{http://utw10945.utweb.utexas.edu/sites/default/files/2019/050%20An%20}{http://utw10945.utweb.utexas.edu/sites/default/files/2019/050 An } Aluminum-\n\nLithium\\%20Alloy\\%20Produced\\%20by\\%20Laser\\%20Powder.pdf.609-15.\n\n[43] Oko EO, Mbakaan C, Barki E. Experimental investigation of the effect of processing parameters on densification, microstructure and hardness of selective laser melted 7075 aluminium alloy. Mater Res Express. 2020;7(3):036512.\n\n[44] Pekok MA, Setchi R, Ryan M, Han Q, Gu D. Effect of process parameters on the microstructure and mechanical properties of AA2024 fabricated using selective laser melting. Int J Adv Manuf Technol. 2021;112(1):17592.\n\n[45] Qi T, Zhu H, Zhang H, Yin J, Ke L, Zeng X. Selective laser melting of A17050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Mater. Des. 2017;135:257-66.\n\n[46] Wang P, Gammer C, Brenne F, Prashanth KG, Mendes RG, R\u00fcmmeli MH, et al. Microstructure and mechanical properties of a heat-treatable Al3.5 Cu-1.5Mg-1Si alloy produced by selective laser melting. Mater. Sci. Eng. A. 2018;711:562-70.\n\n[47] Tan Q, Liu Y, Fan Z, Zhang J, Yin Y, Zhang M-X. Effect of processing parameters on the densification of an additively manufactured $2024 \\mathrm{Al}$ alloy. J Mater Sci Technol. 2020;58:34-45.\n\n[48] Zhang H, Zhu H, Nie X, Qi T, Hu Z, Zeng X. Fabrication and heat treatment of high strength $\\mathrm{Al}-\\mathrm{Cu}-\\mathrm{Mg}$ alloy processed using selective laser melting. SPIE; 2016.\n\n\n\\end{document}\r\n\\documentclass[10pt]{article}\n\\usepackage[utf8]{inputenc}\n\\usepackage[T1]{fontenc}\n\\usepackage{amsmath}\n\\usepackage{amsfonts}\n\\usepackage{amssymb}\n\\usepackage[version=4]{mhchem}\n\\usepackage{stmaryrd}\n\\usepackage{hyperref}\n\\hypersetup{colorlinks=true, linkcolor=blue, filecolor=magenta, urlcolor=cyan,}\n\\urlstyle{same}\n\\usepackage{graphicx}\n\\usepackage[export]{adjustbox}\n\\graphicspath{ {./images/} }\n\\usepackage{bbold}\n\n\\title{Additive manufacturing of magnesium alloys: Characterization and post-processing }\n\n\n\\author{Shambhu Kumar Manjhi a, Prithivirajan Sekar ${ }^{b}$, Srikanth Bontha ${ }^{a}$, A.S.S. Balan ${ }^{a, *}$\\\\\na Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India\\\\\n${ }^{\\mathrm{b}}$ Department of Mechanical Engineering, Indian Institute Technology Madras, Chennai 600036, India}\n\\date{}", "start_char_idx": 189338, "end_char_idx": 192382, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "3a0a24f3-e769-486b-96e0-de3692a77dab": {"__data__": {"id_": "3a0a24f3-e769-486b-96e0-de3692a77dab", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "8577b3f2-8d77-4a39-9a02-bd100e91685c", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "247ea07e300b7d294d58973a450190d75203c44642ca33e5417f1a3be5253185", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "1ab625a4-f9b9-4e80-8c1b-2ab12a7c6c26", "node_type": "1", "metadata": {}, "hash": "b38f87d1607eeccf25abe0a8367b46629099ebd8b66ab85189d90765a4749967", "class_name": "RelatedNodeInfo"}}, "text": "\\author{Shambhu Kumar Manjhi a, Prithivirajan Sekar ${ }^{b}$, Srikanth Bontha ${ }^{a}$, A.S.S. Balan ${ }^{a, *}$\\\\\na Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India\\\\\n${ }^{\\mathrm{b}}$ Department of Mechanical Engineering, Indian Institute Technology Madras, Chennai 600036, India}\n\\date{}\n\n\n%New command to display footnote whose markers will always be hidden\n\\let\\svthefootnote\\thefootnote\n\\newcommand\\blfootnotetext[1]{%\n \\let\\thefootnote\\relax\\footnote{#1}%\n \\addtocounter{footnote}{-1}%\n \\let\\thefootnote\\svthefootnote%\n}\n\n%Overriding the \\footnotetext command to hide the marker if its value is `0`\n\\let\\svfootnotetext\\footnotetext\n\\renewcommand\\footnotetext[2][?]{%\n \\if\\relax#1\\relax%\n \\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\else\\svfootnotetext{#2}\\fi%\n \\else%\n \\if?#1\\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\else\\svfootnotetext{#2}\\fi%\n \\else\\svfootnotetext[#1]{#2}\\fi%\n \\fi\n}\n\n\\begin{document}\n\\maketitle\nReview\n\n\n\n\\section*{A R T I C L E I N F O}\n\\section*{Article history:}\nReceived 16 November 2022\n\nReceived in revised form\n\n1 May 2023\n\nAccepted 19 June 2023\n\nAvailable online 22 June 2023\n\n\\section*{Keywords:}\nAdditive manufacturing\n\nDirect energy deposition\n\nWire arc additive manufacturing\n\nMagnesium alloy\n\nPost-processing\n\nLaser powder bed fusion\n\n\\begin{abstract}\nA B S T R A C T Magnesium and its alloys remain perilous in the framework of light weighting and advanced devices structure such as rockets and satellites. However, the utilization of Magnesium $(\\mathrm{Mg})$ is increasing every year, revealing growing demands in manufacturing industries. Manufacturing of $\\mathrm{Mg}$ components is challenging because of their HCP crystal structure and limited ductility. In this context, additive manufacturing (AM) provides the flexibility to manufacture complex shape components with excellent dimensional stability. It also provides a new possibility for utilizing novel component structures that increase the applications for $\\mathrm{Mg}$ alloy. This review herein pursues to holistically explore the additive manufacturing of $\\mathrm{Mg}$ alloy with a synopsis of processes used and microstructure, mechanical properties, corrosion behaviour and postprocessing of AMed Mg alloy. The challenges and future scope of AMed Mg alloys are critically explored.\\\\\n(C) 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (\\href{http://creativecommons.org/licenses/by-nc-nd/}{http://creativecommons.org/licenses/by-nc-nd/}\n\\end{abstract}\n\n\\section*{1. Introduction}\nMagnesium is the lightest structure among all engineering materials. $\\mathrm{Mg}$ has the lowest density of $1.74 \\mathrm{~g} / \\mathrm{cm}^{3}$ compared to the density of Aluminium (Al), Titanium (Ti) and steel, which are 2.71, 4.5 and $7.8 \\mathrm{~g} / \\mathrm{cm}^{3}$, respectively. The low density, high specific strength, and biodegradable nature make them an attractive material for manufacturing nosewheel doors, flap cover skin, oil tanks, floorings, wingtips, ducts, and seats, fuselage parts in aerospace industries [1], Front end structure, transfer case, engine cradle, incremental panel, steering wheel cores, cam covers, seat back, third-row seat frame in automotive industries [2] and cardiovascular stents, MAGNEZIX screw, micro clip for laryngeal microsurgery, biodegradable orthopaedic implant, wound-closing devices in biomedical sectors [3].", "start_char_idx": 192020, "end_char_idx": 195573, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "1ab625a4-f9b9-4e80-8c1b-2ab12a7c6c26": {"__data__": {"id_": "1ab625a4-f9b9-4e80-8c1b-2ab12a7c6c26", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "3a0a24f3-e769-486b-96e0-de3692a77dab", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "c36d28a45d5db884f15740b5cca2b82ec0b3c2c29a472415512935bf5475708e", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "c5881c90-aff7-4df7-9136-6c3ae77b894c", "node_type": "1", "metadata": {}, "hash": "cfbe720e6c549804ff72d6b11f1b845af4a65b272d1d29a9bc3f7fa4e9b87f7a", "class_name": "RelatedNodeInfo"}}, "text": "The low density, high specific strength, and biodegradable nature make them an attractive material for manufacturing nosewheel doors, flap cover skin, oil tanks, floorings, wingtips, ducts, and seats, fuselage parts in aerospace industries [1], Front end structure, transfer case, engine cradle, incremental panel, steering wheel cores, cam covers, seat back, third-row seat frame in automotive industries [2] and cardiovascular stents, MAGNEZIX screw, micro clip for laryngeal microsurgery, biodegradable orthopaedic implant, wound-closing devices in biomedical sectors [3]. However, the application of Mg and Mg alloy is still limited due to their low ductility, corrosion resistance and flammability [4]. In addition, the manufacturing of $\\mathrm{Mg}$ is challenging owing to its heat-sensitive nature. Currently, $>95 \\%$ of $\\mathrm{Mg}$ alloy products are manufactured using high die-pressure casting\n\\footnotetext{\\begin{itemize}\n \\item Corresponding author\n\\end{itemize}\n\nE-mail address: \\href{mailto:balan@nitk.edu.in}{balan@nitk.edu.in} (A.S.S. Balan).\n\nPeer review under responsibility of Editorial Board of International Journal of Lightweight Materials and Manufacture.\n}\n\n[5]; however, it is unable to manufacture complex shapes such as porous structures and large components like cryogenic containers for aerospace applications [6], propellers for marine applications [7] with desired properties. In contrast, the application of wrought $\\mathrm{Mg}$ alloy is less due to insufficient ductility, around $6 \\%$ of elongation [8]. The processability using cold rolled, hot rolled, and the forging of $\\mathrm{Mg}$ alloy is challenging owing to its HCP crystal structure, which is responsible for insufficient formability [9]. Apart from these challenges, the low corrosion resistance of $\\mathrm{Mg}$ alloy makes their limited application. An additive manufacturing process can be used for manufactured $\\mathrm{Mg}$ components to overcome these challenges. Further heat treatment and surface modification can be used as a post-process to achieve desired properties.\n\nAdditive manufacturing (AM) is a material fabricating technology with immense potential to deposit complex geometry parts, layer by layer, with less human intervention and high material efficiency [10]. In the last two decades, AM technique is becoming the most popular and preferable manufacturing process to be employed in the automobile [11], aerospace [12], architectural [13], military [13], medical [14] and electronics industries [15]. Indeed, $\\mathrm{AM}$ has numerous benefits, such as handling materials and achieving near-net shape parts that reduce the need for tooling and re-fixturing. AM technique produces a whole component with lowers manufacturing costs and material waste. As a result, a\\\\\nsignificantly lower buy-to-fly (BTF) ratio is attained in AM than in other conventional manufacturing techniques involving material removal [16]. However, limited research has been carried out in the field of $\\mathrm{AM}$ of $\\mathrm{Mg}$ alloy to date owing reactive nature of $\\mathrm{Mg}$, which raises the possibility of safety concerns. In addition, other challenges, such as oxidation and evaporation, occurs during $\\mathrm{Mg}$ deposition [17]. Several researchers [18-24] recently successfully deposited WE43Mg alloy using the laser powder bed fusion (LPBF) process. They also demonstrated risk control during the deposition of $\\mathrm{Mg}$ powder. The Risk-controlling factors include storage of the $\\mathrm{Mg}$ powder to maintain quality; personal training is required to control the process, cleaning the powder hopper properly and controlling the reactive gases during the deposition of $\\mathrm{Mg}$. In addition, apart from safety concerns, another concern is the development of high-quality LPBFed Mg. Besides LPBF, various AM techniques have also been discovered for manufacturing Mg alloy, including wire arc additive manufacturing (WAAM), friction stir processing additive manufacturing (FSP-AM) and the sintering process. Among them, the WAAM process is highly preferable for the deposition of Mg alloy. Although FSP-AM is still under consideration in the community of $A M$, however, the technique is accepted because it follows AM strategy in a general sense. Recently structure and properties of additive manufacturing components were reviewed by Debroy et al. [18] and Zeng et al. [19]. Debroy et al. reviewed the process and physics, and Zeng et al. studied the microstructure of LPBFed of Mg alloy.", "start_char_idx": 194998, "end_char_idx": 199519, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "c5881c90-aff7-4df7-9136-6c3ae77b894c": {"__data__": {"id_": "c5881c90-aff7-4df7-9136-6c3ae77b894c", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "1ab625a4-f9b9-4e80-8c1b-2ab12a7c6c26", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "816535ea3bb6c298e0b1aadfb9f4c95cde995564793e6ac8d487f551b539f12f", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "4a10cc81-261f-41fc-b267-8fca901bb262", "node_type": "1", "metadata": {}, "hash": "4790e18a932784a7f922c886258d145bb2a8b99acfec83d4e671e0d26d0ad83f", "class_name": "RelatedNodeInfo"}}, "text": "In addition, apart from safety concerns, another concern is the development of high-quality LPBFed Mg. Besides LPBF, various AM techniques have also been discovered for manufacturing Mg alloy, including wire arc additive manufacturing (WAAM), friction stir processing additive manufacturing (FSP-AM) and the sintering process. Among them, the WAAM process is highly preferable for the deposition of Mg alloy. Although FSP-AM is still under consideration in the community of $A M$, however, the technique is accepted because it follows AM strategy in a general sense. Recently structure and properties of additive manufacturing components were reviewed by Debroy et al. [18] and Zeng et al. [19]. Debroy et al. reviewed the process and physics, and Zeng et al. studied the microstructure of LPBFed of Mg alloy. Some review papers were published on additive manufacturing of Mg alloy [25-27]. However, they did not symmetrically explore the microstructure, mechanical properties, corrosion performance, and WAAMed and LPBFed Mg alloy post-processing. Derekar et al. [23] extensively reviewed the challenges in controlling the quality and part accuracy without considering the microstructure and mechanical properties of metals fabricated using WAAM. They studied the WAAM of metals, including Ti, Al, steel and nickel-based alloys. Wu et al. [24] have formulated a methodology to achieve high-quality WAAM parts. Indeed, they emphasized process selection, feedstock optimization and post-processing treatments necessary to manufacture structurally sound WAAM components. In addition, some of the reviews on WAAM were focused on specific materials, including aluminium [28], stainless steel [29] and titanium [25]. Several consolidated studies have been published regarding the additive manufacturing of magnesium alloys [7-15]. The composition-processing-microstructural properties relationship in AM is not symmetrically established yet. A significant cause for this is that results of microstructural properties relationships for AMed $\\mathrm{Mg}$ alloys have revealed some discrepancies in various reports. Based on the review papers available in the open literature, it is found that few of the reviews were dedicated to AM of magnesium due to the minimal number of studies carried out. The additive manufacturing of magnesium is extensively reviewed to bridge this research gap in this work, with specific attention paid to WAAM and LPBF processes. Moreover, microstructure, mechanical properties, corrosion behaviour and post-processing of $\\mathrm{Mg}$ alloys deposited using WAAM and LPBF are also summarized. In addition, challenges and future scopes in the WAAMed and LPBFed Mg are also discussed. The overview of this review paper is demonstrated in Fig. 1.\n\n\\section*{2. Publication trend on additive manufacturing of $\\mathbf{M g}$ alloys}\nBased on a search from three primary journal databases, including Scopus, Web of Science (WOS) and google scholar, 125 articles are dedicated to laser powder bed fusion (LPBF), and 28 publications are precisely matched to magnesium and magnesium alloy deposited using LPBF process. Similarly, 74 articles are dedicated to WAAM, out of which 14 papers are entirely compared to WAAMed Magnesium alloy. The comparison of publication trends year-wise data related to LPBF and WAAMed Magnesium alloy are vividly shown in Fig. 2.\n\nFig. 2 (a) shows the number of publications on LPBF and WAAMed Mg alloy has rapidly increased since 2020. This increasing trend of publications signifies the importance of research in AMed magnesium alloy. In particular, the comparison of worldwide publication percentages on AMed Mg alloys related to LPBF and WAAM of magnesium alloy is represented in Fig. 2 (b). This figure shows that Asia and Europe are contributing to AM of Mg alloys to a greater extent.\n\n\\section*{3. Wire arc additive manufacturing (WAAM) process}\nWire arc additive manufacturing (WAAM) is a direct energy deposition (DED) AM process consisting of a wire feeder system and an electric arc heating source, depicted in Fig. 3. During the WAAM process, filler metal wire is heated through an electric arc and deposited as a bead on the substrate with the help of industrial robots and gantries. The WAAM system is implemented into conventional welding set-up, reducing the machine's cost. The comparison between commonly used traditional welding-based WAAM processes is listed in Table 1.\n\nThe first WAAM process was patented dates back to 1920 [27].", "start_char_idx": 198710, "end_char_idx": 203209, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "4a10cc81-261f-41fc-b267-8fca901bb262": {"__data__": {"id_": "4a10cc81-261f-41fc-b267-8fca901bb262", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "c5881c90-aff7-4df7-9136-6c3ae77b894c", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "b0d5aef911f3038ac22c0ea4aeadfa75da5b16a9ff0bc4c61f96c8c74c19f57f", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "6144898a-e7cd-40fc-96a7-e04e691cb259", "node_type": "1", "metadata": {}, "hash": "c492fc2f305de34a1fb58651663f016aeac6bf89bc1de519759b2249c9ea772e", "class_name": "RelatedNodeInfo"}}, "text": "In particular, the comparison of worldwide publication percentages on AMed Mg alloys related to LPBF and WAAM of magnesium alloy is represented in Fig. 2 (b). This figure shows that Asia and Europe are contributing to AM of Mg alloys to a greater extent.\n\n\\section*{3. Wire arc additive manufacturing (WAAM) process}\nWire arc additive manufacturing (WAAM) is a direct energy deposition (DED) AM process consisting of a wire feeder system and an electric arc heating source, depicted in Fig. 3. During the WAAM process, filler metal wire is heated through an electric arc and deposited as a bead on the substrate with the help of industrial robots and gantries. The WAAM system is implemented into conventional welding set-up, reducing the machine's cost. The comparison between commonly used traditional welding-based WAAM processes is listed in Table 1.\n\nThe first WAAM process was patented dates back to 1920 [27]. This manufacturing method proves suitable over other AM processes due to less material waste, low machine set-up cost, low production cost, higher production rate, $100 \\%$ wire material utilization and superior fusion of layers within parts of the components [31].\n\nFor instance, Guo et al. reported that the deposition rate of WAAM is around $10 \\mathrm{~kg} / \\mathrm{h}$ with high deposition efficiency, which ensures the capability to deposit large components [32]. Similarly, Zhang et al. [33] claimed that deposition time and post-milling time could be decreased by $40-60 \\%$ and $15-20 \\%$ compared with conventional manufacturing. However, the production of large parts with fewer intricacies with minimized duration and components obtained using the WAAM process is in disparity with those fabricated in conventional ways. However, the surface roughness of components is subordinate to ones manufactured using traditional techniques [34]. However, challenges such as poor surface finish, tensile residual stress, deformation due to high heat input and less dimensional accuracy results in stair-stepping are significant issues in stabilizing the WAAM process [35]. In contrast to conventional WAAM, the cold metal transfer (CMT)-WAAM process is highly suitable for reducing the above defects due to controlled heat input. The CMT machine detects a short circuit which sends a signal that retracts the filler material and gives the weld time to cool before each drop is placed. Therefore, it is named cold metal transfer welding. Because of the cold metal transfer mechanism, welds are smoother and more robust than hotter welds [36]. In addition, CMT allows the material transfer to occur with a relatively lesser current flow. Therefore, this technique is preferable during the deposition of heat-sensitive materials such as Magnesium ( $\\mathrm{Mg}$ ) and Aluminium (Al).\n\n\\subsection*{3.1. WAAM set-up and implementation}\nThe complete process flow of WAAM is depicted in Fig. 4. The software system mainly consists of three independent methods: prototype modelling, layer slicing and tool path planning. For instance, various contour fitting methods for single bead [37,38] and multi-bead overlap models $[39,40]$ were studied. The tool path strategy is also an important parameter influencing the deposition quality and efficiency. For example, raster [28] and Zig-Zag [29] tool\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-03}\n\\end{center}\n\nFig. 1. An overview of this review paper.\n\npath strategies are mostly adapted when depositing simple geometrical structures. In Zig-Zag tool path planning, relatively fewer start and stop points lead to higher deposition efficiency, but some defects are observed at arc off or on conditions. However, in the case of complex geometry deposition like curves and circles, contour [41] and spiral [42] tool path strategies are more significant. In addition, both tool paths exhibit a high deposition rate, but the contour tool path created a closed curve due to high start and stop points that lead to the uneven surface and protrusion of the deposited surface. After tool path planning, materials deposition is carried out. For material deposition, selecting a WAAM set-up is essential to achieve sound deposition quality.\n\nGenerally, three types of WAAM processes listed in Table 1 are commonly used. The symmetric view of the WAAM process is vividly shown in Fig. 5. These three types of WAAM process are unfavourable to deposited batter-quality magnesium alloy due to high heat input, which leads to higher oxidation, spattering, stress, distortion and cracks.", "start_char_idx": 202293, "end_char_idx": 206870, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "6144898a-e7cd-40fc-96a7-e04e691cb259": {"__data__": {"id_": "6144898a-e7cd-40fc-96a7-e04e691cb259", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "4a10cc81-261f-41fc-b267-8fca901bb262", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "ffdb81309ead980fc60878e9d56bd257dc2c3177f7a736a65df6f4d990c462cc", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "0da32b0c-1ee5-42bb-85c1-e44863b8bf15", "node_type": "1", "metadata": {}, "hash": "8e33992a1893a0fc539a2bf175ff54fe39b2a210eb15fd1e3b354c4916973146", "class_name": "RelatedNodeInfo"}}, "text": "However, in the case of complex geometry deposition like curves and circles, contour [41] and spiral [42] tool path strategies are more significant. In addition, both tool paths exhibit a high deposition rate, but the contour tool path created a closed curve due to high start and stop points that lead to the uneven surface and protrusion of the deposited surface. After tool path planning, materials deposition is carried out. For material deposition, selecting a WAAM set-up is essential to achieve sound deposition quality.\n\nGenerally, three types of WAAM processes listed in Table 1 are commonly used. The symmetric view of the WAAM process is vividly shown in Fig. 5. These three types of WAAM process are unfavourable to deposited batter-quality magnesium alloy due to high heat input, which leads to higher oxidation, spattering, stress, distortion and cracks. Therefore, reducing the heat input with sufficient current to fabricate Mg alloy is crucial. Many authors used the cold metal transfer-based WAAM process to address these challenges while depositing the Mg alloy [32,33] because the heat input is 33\\% lower than conventional WAAM processes with less spattering. Schierl et al. [44] reported that the droplet-cutting mode occurred without the aid of electromagnetic force.\\\\\nTherefore, the spatter is significantly less in the CMT-WAAM process. The low heat input of the process is due to a stable short circuit with a low current. This low heat input prevents the oxidation and development of residual stress. The comparison of deposition quality of materials using conventional WAAM and CMT-WAAM is shown in Fig. 6 (a, b, c \\& d). These deposited beads are evidence of high spattering in GMAW, humping defect or irregular bead in GTAW and high oxidation in PAW-based WAAM deposition. However, in CMT-WAAM deposition, no such type of defects are observed. Therefore, the above results ensure that the CMT-WAAM process is highly suitable and recommended for the deposition of $\\mathrm{Mg}$ alloy.\n\nThe CMT process is a modified version of the MIG welding process, based on short-circuiting transfer developed by Fronius Pvt Ltd Austria in 2004, and the schematic views of the CMT-WAAM mechanism can be seen shown in Fig. 7 (a), which consists of three electrical signal cycles: peak current, background current and short-circuit phase. During the peak current phase, a constant voltage corresponding to a high current pulse owing to the arc ignition leads to heating the electrode wire to form a molten droplet. In the background current phase, the current and voltage drastically dropped for a few milliseconds, preventing the globular transfer of molten droplets on the tip of the wire. This phase remains till a short circuit occurs. During the short circuit phase, the\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_7e5fbe1213c12de51fd6g-04}\n\nFig. 2. Publication trends of AMed Mg Alloy (a) comparison showing publication trends of LPBF and WAAM of Mg alloys year-wise (b) comparison of publication \\% worldwide on PBF and WAAM of Mg alloy.\n\narc voltage drops to almost zero, and immediately, a signal is provided to return the wire that leads to molten droplet cutting and transfer to the substrate. These phases of the electrical cycles and droplet transfer mechanism are shown in Fig. 7 (b \\& c).\n\n\\subsection*{3.2. Oxidation prevention}\nMagnesium is highly reactive with oxygen at elevated temperatures. Therefore, high oxidation occurs on the fabricated component during deposition due to continuous heat input [50]. Consequently, oxidation is one of the significant causes that hinder the adaption of the WAAM process for the deposition of magnesium components. One of the simplest methods widely accepted to prevent oxidation is to perform WAAM operation in a closed chamber with inert gas purging, as shown in Fig. 8 (a \\& b). During WAAM, this chamber is filled with an inert gas to prevent oxidation. However, the installation of WAAM set up in a closed chamber limits the axial movement of a robotic arm, thereby reducing the size of the component to be fabricated. In addition, the shielding gas inside the closed chamber must be replaced frequently, influencing the deposition efficiency. To summarise, the shielded chamber WAAM set-up limits the fabrication capabilities of large and complex shaped components [51]. To overcome this limitation, shielding gas devices in WAAM set-up are gradually developing.", "start_char_idx": 206002, "end_char_idx": 210458, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "0da32b0c-1ee5-42bb-85c1-e44863b8bf15": {"__data__": {"id_": "0da32b0c-1ee5-42bb-85c1-e44863b8bf15", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "6144898a-e7cd-40fc-96a7-e04e691cb259", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "36d9359eda7853cb2696715b9f97711bf887cb6855c068bf0a539ba001061677", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "c5819f9b-84b9-4086-9153-8507cecf0475", "node_type": "1", "metadata": {}, "hash": "2709a4f002406fd61af3e309dcb1b3c5919d25e885e6c18c14f65a049d425a41", "class_name": "RelatedNodeInfo"}}, "text": "Consequently, oxidation is one of the significant causes that hinder the adaption of the WAAM process for the deposition of magnesium components. One of the simplest methods widely accepted to prevent oxidation is to perform WAAM operation in a closed chamber with inert gas purging, as shown in Fig. 8 (a \\& b). During WAAM, this chamber is filled with an inert gas to prevent oxidation. However, the installation of WAAM set up in a closed chamber limits the axial movement of a robotic arm, thereby reducing the size of the component to be fabricated. In addition, the shielding gas inside the closed chamber must be replaced frequently, influencing the deposition efficiency. To summarise, the shielded chamber WAAM set-up limits the fabrication capabilities of large and complex shaped components [51]. To overcome this limitation, shielding gas devices in WAAM set-up are gradually developing. Nowadays, a tracing shielding gas device is attached to the welding torch, which helps to form a volume region filled with shielding gas. This type of WAAM set-up can deposit relatively better significant parts with the prevention of oxidation.\n\nThe design of tracing inert gas devices is generally compact and enables uniform distribution of inert gas flowing over the deposition region. The tracing shielding gas attachment in the WAAM setup is usually custom-made to fit in a specific welding torch for a particular deposition. For instance, Fig. 9 depicts the tracing shielding gas set-up in which a ceramic nozzle is mounted on a welding torch. However, the extent of inert gas convergence provided at the deposition zone is not always adequate.\n\nMoreover, The Welding Institute (TWI) developed a tracing shielding gas on GTAW when applying it to trace shielding gas on a root pass groove [56]. The groove geometry, such as width and depth, determines whether shielding gas flood at weld pass is appropriate and whether sufficient shielding gas protection away from the welding torch is provided. The GMAW and automated GTAW requires relatively more significant tracing shielding during high-speed deposition. Resistance glass is employed instead of metal for shielding for better visibility. Hence, any successful tracing shielding gas design that requires experience and proven commercial production should also be available for circumferential fillet and strain in welding. The three typical tracing shielding gas devices with a complete configuration that can be used in the deposition of Mg alloy by WAAM are depicted in Fig. 9 (a, b \\& c). These designs are generally preferred for large shielding volumes. Conversely, the design shown in Fig. 9 (c) employs a shielding device with a hollow cylindrical configuration. Moreover, this design uses a relatively smaller gas shielding area, increasing the operating freedom during deposition.\n\n\\subsection*{3.3. Magnesium alloy system deposited by WAAM}\nLimited research has been carried out in the wire arc additive manufacturing of $\\mathrm{Mg}$ alloy since this new technique is at the early stage of commercialization; however, in present days, the attention of researchers has moved towards the deposition of $\\mathrm{Mg}$ alloy using modern manufacturing processes, such as additive manufacturing and hybrid Additive manufacturing. This is because the demand for $\\mathrm{Mg}$ and $\\mathrm{Mg}$ alloys is significantly increasing in the aerospace, automotive and biomedical industries.\n\nThe literature survey revealed that most research was performed on the $\\mathrm{AZ}$ series of $\\mathrm{Mg}$ alloys. Apart from the $\\mathrm{AZ}$ series, only AEX11 Mg was deposited by the WAAM process to date [57]. Therefore, immense scope exists in the deposition of different grades of $\\mathrm{Mg}$ alloy and in realizing the benefits and challenges of extending the application of AM Mg.\n\n\\subsection*{3.3.1. AZ Series of $M g$ alloy deposited using WAAM}\nRecently, Cao et al. [58] deposited AZ31 Mg deposited by the ultrasonic pulse frequency (UPF)-based WAAM process. They achieved equiaxed grain in the bottom, middle and top sections. During UPF-WAAM, the UPF arc induced significant vibration in the molten pool, influencing heat dissipation and fluid flow. This phenomenon enhanced the \\% of isotropic mechanical properties. Interestingly, Fang et al. [59] studied the microstructure and mechanical properties of GTA-WAAMed AZ31 Mg alloy. They reported deposited thin walls composed of completely fine equiaxed grain with approximately $0.1 \\%$ porosity without heat treatment. However, due to rapid cooling, primarily microstructure revealed $\\alpha-\\mathrm{Mg}$ phase with negligible Al-Mn phase precipitation.", "start_char_idx": 209559, "end_char_idx": 214231, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "c5819f9b-84b9-4086-9153-8507cecf0475": {"__data__": {"id_": "c5819f9b-84b9-4086-9153-8507cecf0475", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "0da32b0c-1ee5-42bb-85c1-e44863b8bf15", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "df996625d933ac821d40ef2f59bde0ba035971cbc2eadd66d2a07f50b98664c5", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "5321f1ec-8a55-4ad7-97f6-b5d806b56481", "node_type": "1", "metadata": {}, "hash": "2e525c539825121260516209d0436d08fe20097f7b66ef0f2fc8c988237dc314", "class_name": "RelatedNodeInfo"}}, "text": "\\subsection*{3.3.1. AZ Series of $M g$ alloy deposited using WAAM}\nRecently, Cao et al. [58] deposited AZ31 Mg deposited by the ultrasonic pulse frequency (UPF)-based WAAM process. They achieved equiaxed grain in the bottom, middle and top sections. During UPF-WAAM, the UPF arc induced significant vibration in the molten pool, influencing heat dissipation and fluid flow. This phenomenon enhanced the \\% of isotropic mechanical properties. Interestingly, Fang et al. [59] studied the microstructure and mechanical properties of GTA-WAAMed AZ31 Mg alloy. They reported deposited thin walls composed of completely fine equiaxed grain with approximately $0.1 \\%$ porosity without heat treatment. However, due to rapid cooling, primarily microstructure revealed $\\alpha-\\mathrm{Mg}$ phase with negligible Al-Mn phase precipitation. The UTS and \\% EL\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-05}\n\\end{center}\n\nFig. 3. Classification of the additive manufacturing process based on the heat source and material feeding strategy [30].\n\nTable 1\n\nDifferent types of WAAM processes [24].\n\n\\begin{center}\n\\begin{tabular}{|c|c|c|}\n\\hline\nWelding Machine setup & Source of Energy & Feature \\\\\n\\hline\nGMAW & Gas Metal-Arc & Consumable electrode, Deposition rate $3-4 \\mathrm{~kg} / \\mathrm{h}$. Poor arc stability, spattering \\\\\n\\hline\nCMT & Tandem Gas Metal-Arc & \\begin{tabular}{l}\nReciprocating consumable wire electrode, Deposition rate $2-3 \\mathrm{~kg} / \\mathrm{h}$. Low heat input, zero spattering, high process \\\\\ntolerance \\\\\n\\end{tabular} \\\\\n\\hline\nGTAW & Gas Tungsten-Arc & Non-consumable electrode, Separate wire feeder, rotation of torch and electrode, Deposition rate 1-2 kg/h. \\\\\n\\hline\nPAW & Plasma & The mechanism is the same as GTAW, only differs based on the energy source \\\\\n\\hline\nTandem/twin wire & MIG/MAG/CMT & Consumable wire has a very high deposition rate $(15-20 \\mathrm{~kg} / \\mathrm{h})$ \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\nin the build direction were slightly lower compared to the travel direction. This is because of several pores found in fractured build direction surfaces, which are responsible for poor mechanical properties. Zhang et al. [60] investigated the effect of solution annealing on microstructure and corrosion performance of WAAMed AZ91Mg thin wall. They observed WAAMed sample consists of an equiaxed $\\mathrm{Mg}$ matrix, $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ and $\\mathrm{Al}_{8} \\mathrm{Mn}_{5}$ secondary phase with an average grain size of $7.9 \\mu \\mathrm{m}$. During the annealing process, the secondary phases of $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ completely dissolved; only the $\\mathrm{Al}_{8} \\mathrm{Mn}_{5}$ phase with the increased grain size of $62.4 \\mu \\mathrm{m}$ remained, as depicted in Fig. 10.\n\nThis is because $\\mathrm{Al}-\\mathrm{Mn}$ particle sizes were larger than the size of $\\mathrm{Mg}-\\mathrm{Al}$. Therefore, the comparatively small particles dissolved completely. Moreover, the corrosion resistance of as-deposited samples was higher than heat-treated samples because of the high amount of secondary phase particles presented in asdeposited samples. Gao et al. [61] investigated the microstructure evolution and mechanical properties of the WAAMed AZ80M Mg thin wall. They reported the microstructure of the bottom, middle and top sections were slightly different. The top zone consists of many equiaxed and dendritic grains, similar to arc-welded microstructure. In contrast, the middle and bottom sections comprised equiaxed grains with dendrite segregation and columnar dendritic grains because of large temperature gradients between the melt pool and substrate, leading to epitaxial growth of columnar grain along the fusion line.", "start_char_idx": 213402, "end_char_idx": 217156, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "5321f1ec-8a55-4ad7-97f6-b5d806b56481": {"__data__": {"id_": "5321f1ec-8a55-4ad7-97f6-b5d806b56481", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "c5819f9b-84b9-4086-9153-8507cecf0475", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "39a5e05c0a204b9e614192e0de2178a1fe7d95b69c9e525c5e79970bb9afad76", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "dcd750c0-23aa-49f3-8055-3f02d134a827", "node_type": "1", "metadata": {}, "hash": "bb5aed98e9b96918ecdabb129f4e5c9ecbb375c579cbf411a3ee0acbd7e7e2be", "class_name": "RelatedNodeInfo"}}, "text": "Therefore, the comparatively small particles dissolved completely. Moreover, the corrosion resistance of as-deposited samples was higher than heat-treated samples because of the high amount of secondary phase particles presented in asdeposited samples. Gao et al. [61] investigated the microstructure evolution and mechanical properties of the WAAMed AZ80M Mg thin wall. They reported the microstructure of the bottom, middle and top sections were slightly different. The top zone consists of many equiaxed and dendritic grains, similar to arc-welded microstructure. In contrast, the middle and bottom sections comprised equiaxed grains with dendrite segregation and columnar dendritic grains because of large temperature gradients between the melt pool and substrate, leading to epitaxial growth of columnar grain along the fusion line.\n\n\\subsection*{3.4. Microstructure and mechanical properties}\nThe mechanical properties of WAAMed components are higher than the cast and comparable to wrought Mg alloys. Therefore, the contribution of WAAM is rapidly increasing, especially in largescale manufacturing industries. Generally, the mechanical properties of WAAMed thin walls are influenced by welding parameters such as voltage, current and travel speed. In addition, the mechanical properties of WAAMed components are also affected by microstructure, crystallographic orientation and mesostructured. For instance, Yang et al. [62] investigated the microstructural and mechanical properties of the bottom, middle and top sections of WAAMed AZ31 Mg alloy. They reported the bottom, middle and top sections of deposited thin walls composed of vertical columnar, directionally changed, and equiaxed dendrites microstructure owing to different temperature history at each layer, as shown in Fig. 11(a-d). Moreover, the middle and bottom sections were composed of columnar dendrites without secondary dendrite arms, as seen in Fig. 11(c-f). The reason behind this phenomenon is temperature gradient of the molten pool gradually decreased due to heat accumulation. Thus, the transition of secondary dendrite\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-06}\n\\end{center}\n\nFig. 4. Flow of wire and arc additive manufacturing process [43].\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-06(1)}\n\\end{center}\n\nFig. 5. Symmetric representation of the WAAM process [45].\n\narms to primary dendrite occurred. The average primary dendrite arm spacing of the bottom, middle, and top regions are $17 \\mu \\mathrm{m}$, $29 \\mu \\mathrm{m}$, and $39 \\mu \\mathrm{m}$, respectively [62]. The microstructure and mechanical properties of various grades of $\\mathrm{Mg}$ alloy fabricated using WAAM are listed in Table 2. This table shows that some authors reported that the mechanical properties in the travel direction are higher than that of the build direction. This is because, during the deposition of the next layer, the upper portion of the previous layer is remelted and mixed with melted-fed wire. This led to the formation new melt pool followed by rapid solidification.\n\nThe space between the newly deposited layer and the previous layer is not only an interface but also a solid-liquid boundary. Therefore, the distribution of grains is complex in this zone due to temperature differences, which leads to a mixture of coarse and fine grains with micropores and microcracks. Because of micropores and microcracks, failure occurs at the interface, resulting in\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-07}\n\\end{center}\n\nFig. 6. Comparison of deposition quality of different WAAM processes (a) GMAW [46], (b) GTAW [47], (c) PAW-WAAM [48], (d) CMT-WAAM.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-07(1)}\n\\end{center}\n\nFig. 7.", "start_char_idx": 216319, "end_char_idx": 220203, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "dcd750c0-23aa-49f3-8055-3f02d134a827": {"__data__": {"id_": "dcd750c0-23aa-49f3-8055-3f02d134a827", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "5321f1ec-8a55-4ad7-97f6-b5d806b56481", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "e83a28cdb6658273fcd2ebb99e29b9345838267292d7c9c7f11744e59e773a2c", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "1c36a1ca-3004-4f4e-ab8a-c98ee8c1cacd", "node_type": "1", "metadata": {}, "hash": "50fbb0d261bb5517315fc204e0b78da07e14977589365b014173dafcdc2af232", "class_name": "RelatedNodeInfo"}}, "text": "Therefore, the distribution of grains is complex in this zone due to temperature differences, which leads to a mixture of coarse and fine grains with micropores and microcracks. Because of micropores and microcracks, failure occurs at the interface, resulting in\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-07}\n\\end{center}\n\nFig. 6. Comparison of deposition quality of different WAAM processes (a) GMAW [46], (b) GTAW [47], (c) PAW-WAAM [48], (d) CMT-WAAM.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-07(1)}\n\\end{center}\n\nFig. 7. (a) Schematic diagram of CMT-WAAM (b) droplet formation and cutting image [49] (c) electric phase cycle [49].\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_7e5fbe1213c12de51fd6g-08}\n\nFig. 8. GTAW-based WAAM set up in a closed chamber (a) physical Map (b) schematic view [52].\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-08(1)}\n\\end{center}\n\nFig. 9. Tracing shielding gas deceive (a) design 1 [53] (b) design 2 [54] (c) design 3 [55].\n\nanisotropic mechanical properties of the WAAMed component. Therefore, a deep study is essential to avoid the anisotropic mechanical properties of deposition.\n\nThe influence of pulse frequency on microstructure and mechanical properties of AZ31 Mg alloy fabricated using the GTAWbased WAAM process was studied by Guo et al. [32] and reported that no pores were observed in the microstructure, as shown in Fig. 12(a-f). They also noticed a substantial microstructure difference in grain size with increased pulse frequency obtained. The grain size first decreased with increasing pulse frequency and then increased marginally. The microstructure of the AZ31 sample deposited at pulse frequencies $10 \\mathrm{~Hz}$ and $5 \\mathrm{~Hz}$ is relatively fine and uniform with a grain size of $21 \\mu \\mathrm{m}$, vividly shown in Fig. 12 (c \\& d). The coarse grain size of $39 \\mu \\mathrm{m}$ is obtained at pulse frequencies $500 \\mathrm{~Hz}, 100 \\mathrm{~Hz}$, and $1 \\mathrm{~Hz}$. as shown in Fig. 12 (a, b \\& f), respectively [71]. Generally, in the CMT arc welding process, the wire starts to melt at the peak current phase, and the molten droplet is still attached to the wire tip owing to surface tension till the base current occurs [72]. After that, when the base current turn to the peak current phase, the adhered droplet on the tip of the wire drops on the last deposited layer. Consequently, droplets have more time to spread over the layers at the low pulse frequency and become larger melt pools, resulting in fewer coarse grains than those at the high frequency. From Fig. 12, it is noted that pulse frequency appreciably influenced the microstructure, especially grain size. Mainly, two factors of pulse frequency contribute more to the change in grain size. The first factor is stirring the melt pool by pulse current. The pulse current stirs the melt pool, producing a high cooling rate that refines the grains. In addition, when increased the pulse current, the plasma momentum with electromagnetic force rises automatically. The plasma momentum generates pressure and shearing force on the surface of the melt pool. Hence, the electromagnetic force pushed the fluid inside the melt pool rapidly inwards and then downwards or down to the axis [73], resulting in rises in weld pool oscillations leading to dendrite fragmentation and producing more heterogeneous nucleation, consequently refining the grains [74]. Secondly, the pulse current directly increased the cooling rate, resulting in grain refinement. The peak current is mainly used as heat input to melt the metal wire, while the base current is much smaller than the peak current and is used to maintain the arc.", "start_char_idx": 219586, "end_char_idx": 223383, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "1c36a1ca-3004-4f4e-ab8a-c98ee8c1cacd": {"__data__": {"id_": "1c36a1ca-3004-4f4e-ab8a-c98ee8c1cacd", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "dcd750c0-23aa-49f3-8055-3f02d134a827", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "f0e8929bceb6360f91a1f58e4b2888719c16a5e5a750914b01ab3813112f114e", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "cb30f61d-facc-481d-8284-7a523c9ba61b", "node_type": "1", "metadata": {}, "hash": "4ee101e57e34180149081b9f99f55a82ea1ebed74e75e7fcb747072a8320664a", "class_name": "RelatedNodeInfo"}}, "text": "Mainly, two factors of pulse frequency contribute more to the change in grain size. The first factor is stirring the melt pool by pulse current. The pulse current stirs the melt pool, producing a high cooling rate that refines the grains. In addition, when increased the pulse current, the plasma momentum with electromagnetic force rises automatically. The plasma momentum generates pressure and shearing force on the surface of the melt pool. Hence, the electromagnetic force pushed the fluid inside the melt pool rapidly inwards and then downwards or down to the axis [73], resulting in rises in weld pool oscillations leading to dendrite fragmentation and producing more heterogeneous nucleation, consequently refining the grains [74]. Secondly, the pulse current directly increased the cooling rate, resulting in grain refinement. The peak current is mainly used as heat input to melt the metal wire, while the base current is much smaller than the peak current and is used to maintain the arc. During the base current phase, the heat input suddenly decreased; therefore, the cooling rate of the weld pool increased, leading to heterogeneous nucleation resulting in grain refinement.\n\nGuo et al. [65] deposited AZ80M Mg alloy deposited using GTAW-based WAAM. This study conducted three different heat treatment processes, $\\mathrm{T} 4, \\mathrm{~T} 5$ and $\\mathrm{T} 6$, on the deposited specimen. The as-deposited specimen was composed of an equiaxed dendrite, and secondary phase particles were distributed along the interdendritic zone to form a network structure. T4 heat treatment dissolved the eutectic phase and eliminated the inhomogeneity of the interlaminar structure. In contrast, T5 inherited the characteristics of dendritic structure and discontinuous secondary phase distribution along the eutectic phase. However, T6 heat treatment formed a continuous phase in the microstructure, effectively enhancing grain uniformity. In addition, the as-build AZ80 Mg alloy specimen\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-09}\n\\end{center}\n\nFig. 10. SEM + EDS mapping of WAAMed AZ91 samples (a) As deposited (b) heat treated [60].\n\nexhibited mechanical anisotropy properties and travel direction, displaying significantly better mechanical properties than those observed in the build direction. From the above results, the mechanical properties of AZ80 Mg alloy are remarkably more excellent than AZ31 Mg. This could be attributed to the additional Wt \\% of Al in AZ80 Mg alloy [75]. Wang et al. [63] varied the parameters of CMT-WAAM during single tracks deposition of AZ31 Mg alloy. They obtained three different characteristics of tracks with the obvious change in their corresponding weld geometries. Among them, the CMT characteristic that exhibited relatively better wettability corresponding to a contact angle of $114.1^{\\circ}$ was chosen for the deposition of the thin wall. Optical micrographs revealed fine columnar dendrites microstructure growing along the build direction in the bottom, middle and top layers. Moreover, equiaxed grains were observed in the heat-affected zone between each layer in travel or welding direction with some pores, as shown in Fig. 13(a-c). EBSD analysis of cross section revealed the difference in grain morphology, texture intensity, and Schmid factor in both build and travel direction, resulting in anisotropic mechanical properties as depicted in Fig. 13 (a1 \\& c1). Interestingly, TD and BD tensile test specimens failed at the HAZ zone between interlayers [76]. Gussev et al. [77] reported that the hard grains with a Schmid factor $\\leq 0.35$ were hard to slip, while soft grains with a Schmid factor $\\geq 0.4$ were easy to slip. According to the statistics of the Schmid factor, the fraction of soft grains was much higher than that of the fraction of hard grains, which indicated that CMT-WAAMed AZ31 Mg components have better ductility than cast and wrought $\\mathrm{Mg}$ alloy. Moreover, the average fraction of hard grains at layer boundaries and at the interlayer of HAZ are $30.8 \\%$ and $42 \\%$, respectively. From this figure, it is inferred that the density of hard grains at the interlayer of HAZ is superior to deposited layers, which indicates that the interlayer of HAZ exhibited comparatively less plastic strain accumulation, resulting in lower plastic properties than deposited layers.", "start_char_idx": 222384, "end_char_idx": 226795, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "cb30f61d-facc-481d-8284-7a523c9ba61b": {"__data__": {"id_": "cb30f61d-facc-481d-8284-7a523c9ba61b", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "1c36a1ca-3004-4f4e-ab8a-c98ee8c1cacd", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "2c352449197d521ee2e00ced32ccd01e7a3fc4f1e58360eb98616b31de6d4a77", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "c0190558-a3cc-48c0-a4b7-b21e4e88789e", "node_type": "1", "metadata": {}, "hash": "6fb6b4836dd02c869e57fbfdbdb9e0c92c697363448d502201c25e5b3864a46a", "class_name": "RelatedNodeInfo"}}, "text": "Gussev et al. [77] reported that the hard grains with a Schmid factor $\\leq 0.35$ were hard to slip, while soft grains with a Schmid factor $\\geq 0.4$ were easy to slip. According to the statistics of the Schmid factor, the fraction of soft grains was much higher than that of the fraction of hard grains, which indicated that CMT-WAAMed AZ31 Mg components have better ductility than cast and wrought $\\mathrm{Mg}$ alloy. Moreover, the average fraction of hard grains at layer boundaries and at the interlayer of HAZ are $30.8 \\%$ and $42 \\%$, respectively. From this figure, it is inferred that the density of hard grains at the interlayer of HAZ is superior to deposited layers, which indicates that the interlayer of HAZ exhibited comparatively less plastic strain accumulation, resulting in lower plastic properties than deposited layers. In addition, Somekawa et al. [78] reported that the low angle grains boundaries (LAGBs) $\\leq 15^{\\circ}$ exhibited little effect on dislocation motion and can reduce the intergranular crack initiation, while high angle grain boundaries (HAGBs) $>15^{\\circ}$ lead to dislocation pile-up, resulting in high plastic deformation resistance. Therefore, according to the statistics chart of misorientation angles, given in Fig. $13\\left(a_{1}-d_{1}\\right)$, all regions show more LAGBs $\\left(\\leq 15^{\\circ}\\right)$ microstructure, which indicates that plastic deformation in CMTWAAMed AZ31 Mg alloy occurred easily. Form the above observation, it is noted that wire arc additively manufactured $\\mathrm{Mg}$ alloys exhibited equiaxed grain and excellent mechanical properties with higher elongation \\%.\n\nGneiger et al. [57] fabricated rare-earth-containing Mg alloys using custom-made AEX11 Mg wires. The mechanical properties were significantly lower than the WAAMed AZ61A in both travel and build directions. Interestingly, after T6 heat treatment, the mechanical properties of AEX11 are relatively greater than WAAMed- AZ61A because of dissolution and change in the shape of the $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ secondary phase particles due to precipitate Han et al. [79] fabricated AZ91 Mg alloy using a CMT-based WAAM technique that exhibited $2 \\%$ anisotropy in UTS and $\\%$ elongation. Guo et al. [65] monitored thermal cycles during the deposition of AZ80 Mg alloy using a thermocouple placed at the bottom of the substrate. They observed that the peak temperature reached a maximum of $450^{\\circ} \\mathrm{C}$ during the first $500 \\mathrm{~s}$. Consequently, the temperatures gradually dropped below $300{ }^{\\circ} \\mathrm{C}$ by the end of $3500 \\mathrm{~s}$ due to an increased distance between the deposited layers and thermocouples.\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_7e5fbe1213c12de51fd6g-10}\n\nFig. 11. SEM micrographs of the longitudinal section (X-Z plane) of the AZ31 thin wall (a) low and (b) high magnification micrographs of the top region, (c) low and (d) high magnification micrographs of the middle region, (e) low and (f) high magnification micrographs of the bottom region [62].\n\nWAAMed AZ80 Mg evinced columnar to equiaxed grains transition (CET), resulting in mechanical anisotropy. However, the mechanical properties of WAAM AZ80 Mg were comparable to wrought AZ80 Mg [80]. Takagi et al. [67] build three AZ31B specimens using MIGWAAM by maintaining constant current and voltage with varying wire feed rates of 400,600 , and $800 \\mathrm{~mm} / \\mathrm{min}$. Among these parameters, samples with minor defects were obtained at $100 \\mathrm{~A}, 10 \\mathrm{~V}$ and $800 \\mathrm{~mm} / \\mathrm{min}$. Indeed, the porosity ratio \\% of 0.00025 during WAAM of AZ31 B was negligible compared to $50 \\%$ and $48 \\%$ exhibited by die-casting [81] and SLM techniques [82].", "start_char_idx": 225953, "end_char_idx": 229718, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "c0190558-a3cc-48c0-a4b7-b21e4e88789e": {"__data__": {"id_": "c0190558-a3cc-48c0-a4b7-b21e4e88789e", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "cb30f61d-facc-481d-8284-7a523c9ba61b", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "a4a7919053e90b0cced26ce91ea7459f265fec678e68e8d16a8b897351486f87", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "3907ac02-e706-43aa-8ec9-91b032752c86", "node_type": "1", "metadata": {}, "hash": "287ffc85068fec1c7e842f91fd002f321cca0bf5b783c533aec163d1de6114ac", "class_name": "RelatedNodeInfo"}}, "text": "WAAMed AZ80 Mg evinced columnar to equiaxed grains transition (CET), resulting in mechanical anisotropy. However, the mechanical properties of WAAM AZ80 Mg were comparable to wrought AZ80 Mg [80]. Takagi et al. [67] build three AZ31B specimens using MIGWAAM by maintaining constant current and voltage with varying wire feed rates of 400,600 , and $800 \\mathrm{~mm} / \\mathrm{min}$. Among these parameters, samples with minor defects were obtained at $100 \\mathrm{~A}, 10 \\mathrm{~V}$ and $800 \\mathrm{~mm} / \\mathrm{min}$. Indeed, the porosity ratio \\% of 0.00025 during WAAM of AZ31 B was negligible compared to $50 \\%$ and $48 \\%$ exhibited by die-casting [81] and SLM techniques [82].\n\nThe Grain size plays a crucial role in determining the mechanical properties of materials, such as strength, hardness, ductility, fatigue and creep resistance. It is well established that according to Hall and Petch's equation, a relatively larger grain size adversely affects the tensile strength of $\\mathrm{Mg}$ [61]. Various techniques such as heat treatment, serve plastic deformation, and addition of foreign particles used as a nano-reinforcement technique in magnesium matrix is employed to achieve grain refinement. LI et al. [69] achieved fine grain of WAAMed AZ31 Mg compared to cast Mg. This is because, during the WAAM process, the metallic wire melted locally by electric arc generation due to the occurrence of a short circuit. As a result, the heat input is controlled, and due to the rapid cooling of beads, highly homogeneous nucleation results in grain refinements.\n\nEBSD analysis is shown in Fig. 14 conforms such a type of assertion. In addition, EBSD micrographs revealed that the grains of\\\\\nWAAMed AZ31 Mg were significantly refined. The grain size achieved during WAAMed $\\mathrm{Mg}$ is comparable to the grain refinement obtained by severe plastic deformation. Indeed, the mechanical properties of WAAMed Mg samples were relatively higher when compared to their cast $\\mathrm{Mg}$ counterparts [83].\n\nMoreover, non-textured equiaxial crystallographic orientation is also revealed with grain refinement in WAAMed magnesium alloy. This is related to the transient solidification of the molten pool because of allowing the end of the wire to contact the substrate plate. The grain refinement of various grades of $\\mathrm{Mg}$ alloy is listed in Table 2.\n\n\\subsection*{3.5. Corrosion performance}\nMg exhibits relatively lower corrosion resistance, which remains a hindrance in extending the application of $\\mathrm{Mg}$ alloys. Indeed, understanding of corrosion mechanism of AMed Mg alloy is of prime importance to widen application. The corrosion performance of $\\mathrm{Mg}$ alloy depends on grains size, formation of secondary phase particles and texture of materials. Therefore, Li et al. [69] manufactured AZ31 Mg alloy using CMT-WAAM and studied the effect of grains size and orientation on corrosion performance in $0.5 \\mathrm{wt} \\% \\mathrm{NaCl}$ solution. They reported that WAAMed AZ31 Mg specimens' corrosion resistance was slightly higher or comparable to cast specimens. The formation of $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ phases is higher in the cast; in contrast, WAAMed specimens are composed of negligible $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$\n\nTable 2\n\nMicrostructure and UTS, YS and \\%EL of WAAMed Mg system.\n\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|c|}\n\\hline\nMg Alloy & \\begin{tabular}{l}\nSample \\\\\nDirection \\\\\n\\end{tabular} & UTS (Mpa) & $\\mathrm{YS}(\\mathrm{MPa})$ & $\\%$ EL & Grain size & Grain type & Ref. \\\\\n\\hline\nAZ31 & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$210.5 \\pm 18.2$ \\\\\n$225.7 \\pm 12.1$ \\\\\n$210.5 \\pm 3.5$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$125.", "start_char_idx": 229030, "end_char_idx": 232805, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "3907ac02-e706-43aa-8ec9-91b032752c86": {"__data__": {"id_": "3907ac02-e706-43aa-8ec9-91b032752c86", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "c0190558-a3cc-48c0-a4b7-b21e4e88789e", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "e76934294dcc8822c4823f3f487af517ff0b9c11fc5dcf21e503b44f290070f7", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "02339fb2-e1a4-4777-b1ca-5c73b8771270", "node_type": "1", "metadata": {}, "hash": "b2f03ae6e63d69718377912f50b4d4b8199390dcced2966655aae0f503af23c8", "class_name": "RelatedNodeInfo"}}, "text": "\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|c|}\n\\hline\nMg Alloy & \\begin{tabular}{l}\nSample \\\\\nDirection \\\\\n\\end{tabular} & UTS (Mpa) & $\\mathrm{YS}(\\mathrm{MPa})$ & $\\%$ EL & Grain size & Grain type & Ref. \\\\\n\\hline\nAZ31 & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$210.5 \\pm 18.2$ \\\\\n$225.7 \\pm 12.1$ \\\\\n$210.5 \\pm 3.5$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$125.9 \\pm 5.0$ \\\\\n$85.4 \\pm 3.0$ \\\\\n$131.6 \\pm 4.2$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$17.2 \\pm 4.2$ \\\\\n$28.3 \\pm 2.0$ \\\\\n$10.55 \\pm 1.61$ \\\\\n\\end{tabular} & & \\begin{tabular}{l}\nThe bottom, middle and top sections are \\\\\ncomposed of columnar dendrites, \\\\\ndirection-changed columnar dendrites \\\\\nand equiaxed dendrites \\\\\n\\end{tabular} & [63] \\\\\n\\hline\nAZ61A & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$264.1 \\pm 1.8$ \\\\\n$256.4 \\pm 10.1$ \\\\\n$237 \\pm 6.3$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$104.4 \\pm 1.6$ \\\\\n$99.2 \\pm 1.7$ \\\\\n$119 \\pm 13.4$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$15.4 \\pm 0.7$ \\\\\n$15.3 \\pm 3.5$ \\\\\n$12 \\pm 0.7$ \\\\\n\\end{tabular} & & \\begin{tabular}{l}\nGlobular and equiaxed without the \\\\\nformation of elongated grains \\\\\n\\end{tabular} & [64] \\\\\n\\hline\nAZ80M & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n280 \\\\\n230 \\\\\n\\end{tabular} & & \\begin{tabular}{l}\n$15 \\%$ \\\\\n$13 \\%$ \\\\\n\\end{tabular} & - & equiaxed dendrite & $[65]$ \\\\\n\\hline\nAZ91 & \\begin{tabular}{l}\nTD \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$245.2 \\pm 1.0$ \\\\\n$250.3 \\pm 2.6$ \\\\\n\\end{tabular} & & \\begin{tabular}{l}\n$16.3 \\pm 1.0$ \\\\\n$17.5 \\pm 1.6$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nGrain size above and below the fusion \\\\\nline are $4.8-25.2$ and $20.1-48.5 \\mu \\mathrm{m}$ \\\\\n\\end{tabular} & Equiaxed grain & [66] \\\\\n\\hline\nAZ80M & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$308 \\pm 6.5$ \\\\\n$237 \\pm 6.3$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$146 \\pm 46.7$ \\\\\n$119 \\pm 13.4$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$15 \\pm 0.5$ \\\\\n$12 \\pm 0.7$ \\\\\n\\end{tabular} & - & \\begin{tabular}{l}\nThe bottom,", "start_char_idx": 232375, "end_char_idx": 234564, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "02339fb2-e1a4-4777-b1ca-5c73b8771270": {"__data__": {"id_": "02339fb2-e1a4-4777-b1ca-5c73b8771270", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "3907ac02-e706-43aa-8ec9-91b032752c86", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "ee59d6ce47f34c88f056da0a1537e47f4b6bbbc78420a1071031e1222b2270a2", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "3a4e95cf-322f-4711-9bd0-ad526fb87d91", "node_type": "1", "metadata": {}, "hash": "0fc70d55aec476d79459a0160581f4ba32aa5c6853b9d01d1c693c3d2bc24b0e", "class_name": "RelatedNodeInfo"}}, "text": "8-25.2$ and $20.1-48.5 \\mu \\mathrm{m}$ \\\\\n\\end{tabular} & Equiaxed grain & [66] \\\\\n\\hline\nAZ80M & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$308 \\pm 6.5$ \\\\\n$237 \\pm 6.3$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$146 \\pm 46.7$ \\\\\n$119 \\pm 13.4$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$15 \\pm 0.5$ \\\\\n$12 \\pm 0.7$ \\\\\n\\end{tabular} & - & \\begin{tabular}{l}\nThe bottom, middle and Top sections \\\\\nare composed of columnar dendritic, \\\\\nequiaxed with dendrite segregation, \\\\\nand dendritic \\\\\n\\end{tabular} & [61] \\\\\n\\hline\nAZ31 & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & & & & & & \\\\\n\\hline\n\\begin{tabular}{l}\n \\\\\nAEX11 \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$275 \\& 243$ \\\\\n$272 \\& 233$ \\\\\n\\end{tabular} & & \\begin{tabular}{l}\n$16.8 \\& 4.5$ \\\\\n$17.2 \\& 5.2$ \\\\\n\\end{tabular} & & & [57] \\\\\n\\hline\nAZ31B & BD & 239 & & 21 & \\begin{tabular}{l}\nBoundary, Middle and Top sections \\\\\ncomposed of 18,55 and $80 \\mu \\mathrm{m}$ grain size \\\\\n\\end{tabular} & \\begin{tabular}{l}\nFine and coarse dendrite microstructure \\\\\nvaries with the wire feed rate \\\\\n\\end{tabular} & [67] \\\\\n\\hline\nAZ31 & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$222.9 \\pm 5.4$ \\\\\n$190.7 \\pm 23.3$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$109.1 \\pm 17.9$ \\\\\n$94.7 \\pm 2.0$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$20.26 \\pm 3.79$ \\\\\n$13.82 \\pm 3.98$ \\\\\n\\end{tabular} & Avg grain diameter is $24.7 \\mu \\mathrm{m}$ & \\begin{tabular}{l}\nFine equiaxed grains at different \\\\\nregions, bottom, middle and top \\\\\n\\end{tabular} & [59] \\\\\n\\hline\nAZ31 & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n211.2 \\\\\n203.3 \\\\\n\\end{tabular} & & \\begin{tabular}{l}\n22.27 \\\\\n20.19 \\\\\n\\end{tabular} & - & Complete equiaxed microstructure & [58] \\\\\n\\hline\nAZ91 & - & - & - & - & \\begin{tabular}{l}\nAs WAAMed grain size ranges from \\\\\n$2 \\mathrm{~mm}$ to $25 \\mathrm{~mm}$.", "start_char_idx": 234156, "end_char_idx": 236200, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "3a4e95cf-322f-4711-9bd0-ad526fb87d91": {"__data__": {"id_": "3a4e95cf-322f-4711-9bd0-ad526fb87d91", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "02339fb2-e1a4-4777-b1ca-5c73b8771270", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "01857e26d4cff5f92964dd1e9451c742d421ba781d1893e2af576f7ccfb32701", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "e2ce9b03-eade-4174-ae33-911e97d095ce", "node_type": "1", "metadata": {}, "hash": "9462e5c03fec8fa04179a71e47ffcc201b20e16c03b6c2ff91317f9c7a93123b", "class_name": "RelatedNodeInfo"}}, "text": "7 \\mu \\mathrm{m}$ & \\begin{tabular}{l}\nFine equiaxed grains at different \\\\\nregions, bottom, middle and top \\\\\n\\end{tabular} & [59] \\\\\n\\hline\nAZ31 & \\begin{tabular}{l}\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n211.2 \\\\\n203.3 \\\\\n\\end{tabular} & & \\begin{tabular}{l}\n22.27 \\\\\n20.19 \\\\\n\\end{tabular} & - & Complete equiaxed microstructure & [58] \\\\\n\\hline\nAZ91 & - & - & - & - & \\begin{tabular}{l}\nAs WAAMed grain size ranges from \\\\\n$2 \\mathrm{~mm}$ to $25 \\mathrm{~mm}$. while heat treated \\\\\n$30 \\mathrm{~mm}-1050 \\mathrm{~mm}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nEquiaxed grains are fine in WAAM \\\\\nduring the course in HT \\\\\n\\end{tabular} & [60] \\\\\n\\hline\n\\begin{tabular}{l}\nAZ91D \\\\\nAZ31 \\\\\n\\end{tabular} & - & - & - & - & \\begin{tabular}{l}\nThe average grain diameter of $3.35 \\mu \\mathrm{m}$ \\\\\nAvg grains in TD is $12 \\mu \\mathrm{m}$ while in BD, \\\\\n$6.9 \\mu \\mathrm{m}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nfine equiaxed grains \\\\\nEquiaxed grain texture \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$[68]$ \\\\\n$[69]$ \\\\\n\\end{tabular} \\\\\n\\hline\nAZ80M & \\begin{tabular}{l}\nTD \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n308.7 \\\\\n237.3 \\\\\n\\end{tabular} & \\begin{tabular}{l}\n146 \\\\\n119 \\\\\n\\end{tabular} & \\begin{tabular}{l}\n15.4 \\\\\n12.2 \\\\\n\\end{tabular} & & Equiaxed and dendritic grains & $[70]$ \\\\\n\\hline\n\\begin{tabular}{l}\nAZ31 \\\\\nAZ31 \\\\\n\\end{tabular} & \\begin{tabular}{l}\n- \\\\\n$\\mathrm{TD}$ \\\\\n$\\mathrm{BD}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n260 \\\\\n$151.9 \\pm 12.9$ \\\\\n$210.5 \\pm 3.5$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n102 \\\\\n$71.2 \\pm 4.5$ \\\\\n$131.6 \\pm 4.2$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\n23 \\\\\n$7.54 \\pm 1.32$ \\\\\n$10.55 \\pm 1.61$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nAverage grain diameter $21 \\mu \\mathrm{m}$ \\\\\nDecrease the height of vertical \\\\\ndendrites from $1.55 \\mathrm{~mm}$ to $0.90 \\mathrm{~mm}$ \\\\\nand increase the height of directional \\\\\nchange dendrites from $0.65 \\mathrm{~mm}$ to \\\\\n$1.50 \\mathrm{~mm}$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nFine equiaxed \\\\\nThe bottom, middle, and top section \\\\\nexhibits vertical columnar dendrites, \\\\\ndirection-changed columnar dendrites \\\\\nand columnar to equiaxed transition \\\\\n(CET) \\\\\n\\end{tabular} & \\begin{tabular}{l}\n$[32]$ \\\\\n$[62]$ \\\\\n\\end{tabular} \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-11}\n\\end{center}\n\nFig. 12.", "start_char_idx": 235703, "end_char_idx": 238127, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "e2ce9b03-eade-4174-ae33-911e97d095ce": {"__data__": {"id_": "e2ce9b03-eade-4174-ae33-911e97d095ce", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "3a4e95cf-322f-4711-9bd0-ad526fb87d91", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "fe3592bd46a488c62b39201088b979f7707d94a6895d01459c7bab50813b4b4e", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "566bebaf-ff58-4879-8b53-346cd4348907", "node_type": "1", "metadata": {}, "hash": "b7a11c5c0ede753b13ab7488856b91ea84ee1ef40850bea79e2b6fb30f6c18b0", "class_name": "RelatedNodeInfo"}}, "text": "12. Microstructures of the samples deposited by different pulse frequencies (a) $500 \\mathrm{~Hz}$, (b) $100 \\mathrm{~Hz}$, (c) $10 \\mathrm{~Hz}$, (d) $5 \\mathrm{~Hz}$, (e) $2 \\mathrm{~Hz} \\mathrm{and}$ (f) $1 \\mathrm{~Hz}$ [32].\n\nphases. However, the grain refinement in as-deposited samples is relatively higher than as cast. Therefore, grain refinement is the most influencing factor for slightly higher corrosion resistance [69].\n\nThe electrochemical corrosion behaviour of cast AZ31 Mg substrate and WAAMed wall is illustrated in Fig. 15. Fang et al. [59] investigated the electrochemical performance of rolled and GTAWAAMed AZ31Mg. The corrosion rate was measured to be 13.62 and $3.43 \\mathrm{~mm} / \\mathrm{yr}$ for substrate and WAAMed AZ31 Mg, respectively. Although the authors pointed out various factors responsible for this significant increase in corrosion resistance of the WAAMed part, the corrosion mechanism needed to be completely understood due to less investigation on the corrosion performance of WAAMed AZ31 Mg alloy. Zhang et al. [60] studied the effect of solution annealing of microstructure and corrosion performance of\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-12}\n\\end{center}\n\nFig. 13. Optical micrograph of CMT-WAAMed AZ31Mg (a) OM image of build direction (BD) (b) high magnification image at point A in Fig. (13 (a), (c) OM micrograph of travel direction (TD) (d) high magnification image of point B in Fig. (13 (c), (a1) grain morphologies and statistics of Schmid factor and misorientation angle of layer boundary of BD (b1) EBSD image of HAZ interlayer (c1) EBSD image of layer boundary of TD (d) EBSD micrograph of HAZ interlayer of TD [63].\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-13(1)}\n\\end{center}\n\nFig. 14. EBSD image of WAAMed AZ31 magnesium alloy (a) ND-TT direction (b) TD- TT direction [69].\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-13}\n\\end{center}\n\nFig. 15. (a) Potentiodynamic polarization curves (b) corresponding surface morphologies of cast AZ31 and WAAM AZ31 immersed in $0.5 \\mathrm{wt} \\% \\mathrm{NaCl}$ solution with 30 min stabilization [69].\n\nWAAMed AZ91 Mg. They found as the build sample exhibited $\\mathrm{E}_{\\mathrm{corr}}$ and $\\mathrm{I}_{\\text {corr }}$ of -1.522 and $3.256 \\mathrm{~mA} / \\mathrm{cm}^{2}$ at $0 \\mathrm{~h} .-1.530,2.971 \\mathrm{~mA} / \\mathrm{cm}^{2}$ at $24 \\mathrm{~h}$. In addition, heat-treated samples reveal the $\\mathrm{E}_{\\text {corr }}$ and $\\mathrm{I}_{\\text {corr }}$ of -1.552 and $2.751 \\mathrm{~mA} / \\mathrm{cm}^{2}$ at $0 \\mathrm{~h}$, but at $24 \\mathrm{~h}$, the $\\mathrm{E}_{\\text {corr }}$ and $\\mathrm{I}_{\\text {corr }}$ were -1.546 and $1.447 \\mathrm{~mA} / \\mathrm{cm}^{2}$, which is slightly decreased. This result illustrates the higher corrosion resistance of the heat-treated sample at $24 \\mathrm{~h}$. This is because of grain coarsening, and large particles corresponding to the $\\mathrm{Al}-\\mathrm{Mg}$ phase was dissolved during heat treatment.\n\n\\subsection*{3.6.", "start_char_idx": 238124, "end_char_idx": 241249, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "566bebaf-ff58-4879-8b53-346cd4348907": {"__data__": {"id_": "566bebaf-ff58-4879-8b53-346cd4348907", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "e2ce9b03-eade-4174-ae33-911e97d095ce", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "0cc240e5ad25ee6d91870e2796201f579e421be6f356ee8ed5131d7e58570b34", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "c9a5e985-c7d1-4595-83d2-d79ce264abcd", "node_type": "1", "metadata": {}, "hash": "62879199a36fda4d76e24f4ed05d7c1a4613cb6a442854274db25a96397c17db", "class_name": "RelatedNodeInfo"}}, "text": "In addition, heat-treated samples reveal the $\\mathrm{E}_{\\text {corr }}$ and $\\mathrm{I}_{\\text {corr }}$ of -1.552 and $2.751 \\mathrm{~mA} / \\mathrm{cm}^{2}$ at $0 \\mathrm{~h}$, but at $24 \\mathrm{~h}$, the $\\mathrm{E}_{\\text {corr }}$ and $\\mathrm{I}_{\\text {corr }}$ were -1.546 and $1.447 \\mathrm{~mA} / \\mathrm{cm}^{2}$, which is slightly decreased. This result illustrates the higher corrosion resistance of the heat-treated sample at $24 \\mathrm{~h}$. This is because of grain coarsening, and large particles corresponding to the $\\mathrm{Al}-\\mathrm{Mg}$ phase was dissolved during heat treatment.\n\n\\subsection*{3.6. Post-processing}\nIn general, post-processing such as thermal (heat treatment, laser melting, laser shock peening) and mechanical (machining, burnishing, shot penning) processes can improve the properties of additive manufactured $\\mathrm{Mg}$ alloy; however, minimal literature is available regarding post-processing of AMed $\\mathrm{Mg}$ alloy due comparatively expensive additive manufacturing machine, and deposition of Mg alloy is relatively challenging, but since 2020 the number of publication is rapidly increasing, which indicates the importance of research in the field of $\\mathrm{AM}$ of $\\mathrm{Mg}$ alloy. Generally, in the post-process, defects in the materials resulting from the previous process are eliminated by post-processing and desired properties impossible during manufacturing are achieved. The mechanical properties were enhanced by post-processing due to surface modification techniques such as shock peening, shot peening, coating and burnishing. Hence, post-processing of AMed samples is mandatory to extend their application in automobile, aerospace and biomedical industries. As discussed, AM is an exemplary process for low production costs and high deposition rates. Despite these advantages, achieving desired physical and mechanical properties in AM metallic components takes time and effort.\n\nThis is because every layer of AMed wall experiences multiple thermal cycles resulting in simultaneous high heat accumulation and rapid cooling. As a result, two adverse effects are experienced by fabricated AM components (i) development of residual stress and (ii) variation in microstructure along the bottom, middle and top section, as explained elsewhere [84]. As a result of post- processing, the surface of $\\mathrm{Mg}$ undergoes plastic deformation, thereby generating refined grains and developing compressive residual stress over the surface of the specimen. Interestingly, the possible defects that arise from AM are also repaired during postprocessing. In summary, post-processing is expected to (i) increase grain refinement and induce compressive residual stress. Existing post-processing techniques, which are widely used on WAAMed Mg alloy, are shown in Fig. 16.\n\nThe WAAM process results in anisotropic mechanical properties because of the different temperature gradients with increasing the number of layers. Therefore, the cold rolling process is used immediately after deposition, enhancing material homogeneity and reducing tensile residual stress during the WAAM process. Inter-pass cooling is used to minimize surface oxidation, achieve grain refinement, increase hardness and improve the strength of as-deposited components. Furthermore, inter-pass cooling reduced the dwell time between deposited layers and enhanced production efficiency. Shot peering and (abbreviated) UIT are also used to minimize the local residual stress [86]. In both processes, highenergy media is used to contact the deposited surface and impose compressive residual stress, improving surface properties such as hardness and fatigue life. Typically shot peening produced a shallow depth on the sample surface and induced compressive residual stress.\n\nIn contrast, UIT resulted in grain refinement, which enhanced the component's strength. The friction stir process is one of the surface modification techniques used to modify WAAMed parts. In this process, the grain was refined due to dynamic recrystallization that improved the mechanical properties. This process has some limitations, such as not being used for complex shaped components.\n\nFor example, Guo et al. evaluated the microstructure and mechanical properties of WAAMed AM80 M after subjecting to T4, T5 and T6 heat treatment [65], as shown in Fig. 17. Due to higher thermal stability, $\\mathrm{Ca}$ and $\\mathrm{Y}$ particles were not dissolved after T4 heat treatment.", "start_char_idx": 240624, "end_char_idx": 245111, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "c9a5e985-c7d1-4595-83d2-d79ce264abcd": {"__data__": {"id_": "c9a5e985-c7d1-4595-83d2-d79ce264abcd", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "566bebaf-ff58-4879-8b53-346cd4348907", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "f3916fa166340e221f74ec2984b8598e6d4d7634039af4f6187fefaaa71c7aac", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "d5fc34f7-109e-4633-8aa4-a967050815f6", "node_type": "1", "metadata": {}, "hash": "4d3adcf8ce9ea77c9506c3048dee8ce6d55cdba47d95c65472e4b42a8c77b97f", "class_name": "RelatedNodeInfo"}}, "text": "Typically shot peening produced a shallow depth on the sample surface and induced compressive residual stress.\n\nIn contrast, UIT resulted in grain refinement, which enhanced the component's strength. The friction stir process is one of the surface modification techniques used to modify WAAMed parts. In this process, the grain was refined due to dynamic recrystallization that improved the mechanical properties. This process has some limitations, such as not being used for complex shaped components.\n\nFor example, Guo et al. evaluated the microstructure and mechanical properties of WAAMed AM80 M after subjecting to T4, T5 and T6 heat treatment [65], as shown in Fig. 17. Due to higher thermal stability, $\\mathrm{Ca}$ and $\\mathrm{Y}$ particles were not dissolved after T4 heat treatment. Ca is a microelement that can replace the $\\mathrm{Mg}$ atom in the $\\beta-\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ secondary phase, increasing the covalent and noncovelent bound strength of $\\mathrm{Mg}-\\mathrm{Mg}$ atoms [87]. During the $\\mathrm{T} 5$ heat treatment, additional secondary phases were formed adjacent\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-14}\n\\end{center}\n\nFig. 16. Various post-processing techniques for enhancing the mechanical properties of WAAMed components [85].\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_7e5fbe1213c12de51fd6g-15}\n\nFig. 17. Microstructure of WAAMed AZ80M Mg alloy with EDS analysis (a \\& b) as deposited (c \\& d) T4 condition (e \\& f) T5 condition and (g \\& h) T6 condition [65].\n\nto the inter-dendritic and inter-dendritic secondary phases. In contrast, the secondary phases were dissolved due to T6 heat treatment, and a fine equiaxed grain structure was obtained.\n\nThe deposited AZ80M sample exhibited anisotropic tensile properties w.r.t to the deposition and travel directions. In T4 heattreated samples, hardness $(58.78 \\mathrm{HV})$ and tensile strength decreased relatively. Interestingly, during T5 and T6 heat treatment conditions, simultaneous increased tensile strength and hardness (78.4 HV) were observed [65]. From the above results, it is found that the mechanical properties of WAAMed AZ80M mg alloy decreased after $\\mathrm{T} 4$ heat treatment; in contrast, they increased after T6 [63].\n\n\\section*{4. Laser powder bed fusion (LPBF)}\nThe LPBF is the most popular AM process among all powder bed fusion (PBF)-AM techniques. In LPBF, metal powder is melted using a laser and solidified on the substrate. This process is continued to create a track, and further, depositing $\\mathrm{N}$ number of layers forms a component. For the first time, $\\mathrm{Ng}$ et al. [88] deposited single tracks of pure $\\mathrm{Mg}$ ( $98.4 \\%$ pure) using the LPBF process to optimize process parameters in 2010 . They reported that at laser currents 25 and 28 A, no tracks were formed due to insufficient heat to melt the $\\mathrm{Mg}$ powder; in contrast, at 34A laser current, they achieved deposited tracks with inconsistent beads. Zhang et al. [89] studied the bead quality and mechanical properties of LPBFed $\\mathrm{Mg}-9 \\% \\mathrm{Al}-\\mathrm{Mg}$ alloy and reported poor mechanical properties between laser power $10-20 \\mathrm{~W}$ with a scan speed of $0.01-0.16 \\mathrm{~m} / \\mathrm{s}$. In addition, higher smoke appears with metal remnant between scan speed 30-60W laser power and evaporation of metal occurred at laser pawer $90-100 \\mathrm{~W}$. However, the comparatively consistent bead occurred at laser power between 60 and 80W. Jauer et al. [90] deposited AZ91 $\\mathrm{Mg}$ alloy using the LPBF process and achieved almost zero porosity. Following this, in 2014, Gieseke et al.", "start_char_idx": 244318, "end_char_idx": 248017, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "d5fc34f7-109e-4633-8aa4-a967050815f6": {"__data__": {"id_": "d5fc34f7-109e-4633-8aa4-a967050815f6", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "c9a5e985-c7d1-4595-83d2-d79ce264abcd", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "3de7f7d3be1f2037db123cc1c70682018f69d091a2cb9ea125f555d96ee250bd", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "46fe9d2d-f09d-4d15-97d5-a5997db55104", "node_type": "1", "metadata": {}, "hash": "d0590c0f92f14eeab94689a1452fe7ea5da5a7fc036d184c39819c2497a6cad7", "class_name": "RelatedNodeInfo"}}, "text": "Zhang et al. [89] studied the bead quality and mechanical properties of LPBFed $\\mathrm{Mg}-9 \\% \\mathrm{Al}-\\mathrm{Mg}$ alloy and reported poor mechanical properties between laser power $10-20 \\mathrm{~W}$ with a scan speed of $0.01-0.16 \\mathrm{~m} / \\mathrm{s}$. In addition, higher smoke appears with metal remnant between scan speed 30-60W laser power and evaporation of metal occurred at laser pawer $90-100 \\mathrm{~W}$. However, the comparatively consistent bead occurred at laser power between 60 and 80W. Jauer et al. [90] deposited AZ91 $\\mathrm{Mg}$ alloy using the LPBF process and achieved almost zero porosity. Following this, in 2014, Gieseke et al. [91] fabricated pure\\\\\nmagnesium and Mg-0.8 Ca alloy and described the effect of scanning direction on deposition quality and evaporation. This phenomenon is vividly shown in Fig. 18.1),2),3) and 4) represent the heating of top powder particles, vaporizing top powder particles with the shock wave, releasing nano-size particles and track formation with re-oxidation, respectively.\n\nThey also recommended that the scanning direction is changed for successive layers considering the excellent quality of the side surface of specimens perpendicular to the scanning direction. In 2015 Gieseke's team collaborated with Magnesium Elecktron, England and deposited WE43 and AZ91 Magnesium alloy using SLM to optimize the process parameters. They reported dendrite grain formation, coarse grain and high metal evaporation at $0.02 \\mathrm{~m} / \\mathrm{s}$ scan speed with $10 \\mathrm{~W}$ laser power, $0.01 \\mathrm{~m} / \\mathrm{s}$ with $20 \\mathrm{~W}$, and $0.08 \\mathrm{~m} /$ min with $110 \\mathrm{~W}$, respectively [93].\n\nIn 2017 Tandon et al. [94] published a review paper on SLMed Magnesium alloy. They reported the contaminants collected on powder surfaces in the form of the oxide layer lead to weaker interlayer bonding. The process parameters, namely laser power and scan time interval (STI), are responsible for oxidation and balling effects. STI denotes delay time in the SLM process, which occurs between the completion of a layer scanning and the melting of the next layer [95]. When the time delay between the scanning of the next layer is appropriated, the deposited components partially cool down, resulting in the minimum formation of oxide and better wettability. These parameters also enhanced the surface integrity by reducing the number of partially melted powder particles stuck on the surface of the deposited components [92]. Pawlak et al. [82] deposited AZ31 Mg alloy using SLM and explained the design of experiments to optimize process parameters. They also reported that the relative density and hardness of SLMed AZ31 Mg samples are relatively higher than those wrought AZ31 Mg due to rapid cooling, resulting in grain refinement and the formation of twins. However, higher material oxidation also occurred owing to excessive heat input. Salehi et al. [96] reported that magnesium powder is highly reactive, with residual oxygen contents present as an impurity in an inert gas-protective atmosphere. In addition, the authors also noted that it is challenging to deposit defect-free magnesium alloy by L-PBF because of the volatile nature of magnesium powder. Salehi et al. [96] and Zhou et al. [97] evaluated the microstructure and mechanical properties of AZ31B and $\\mathrm{Mg}-\\mathrm{Zn}-\\mathrm{Zr}$, deposited using SLM and reported that vaporization of $\\mathrm{Mg}$ alloy is inevitable. Due to high energy input and rapid cooling, the fine grain was obtained in the centre of the track, and coarse grains were formed at the boundary of the track $[83,64]$. Another essential parameter to be considered is the preheating of powder that assists in producing flat and regular tracks [98]. In the L-PBF process, major defects are improper powder melting, oxidation and evaporation, and residual stress. Due to Mg's low heat absorption capacity, most of the laser energy is reflected, which leads to improper melting of Mg powder. Indeed, when the laser density increases, the melt pool temperature exceeds $1120^{\\circ} \\mathrm{C}$, significantly higher than Mg's boiling point.", "start_char_idx": 247351, "end_char_idx": 251527, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "46fe9d2d-f09d-4d15-97d5-a5997db55104": {"__data__": {"id_": "46fe9d2d-f09d-4d15-97d5-a5997db55104", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "d5fc34f7-109e-4633-8aa4-a967050815f6", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "4f18526e5ffd69b7b4e1d7177476cf6a93e236fac6e34bd9a7a48da053f42266", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "a2d814d7-c033-4b8d-8dda-fff09da8faf4", "node_type": "1", "metadata": {}, "hash": "1e7c66bc20908c5cb0fad063325f476ce00915c578601ab97e04d1e82c4e1f64", "class_name": "RelatedNodeInfo"}}, "text": "Due to high energy input and rapid cooling, the fine grain was obtained in the centre of the track, and coarse grains were formed at the boundary of the track $[83,64]$. Another essential parameter to be considered is the preheating of powder that assists in producing flat and regular tracks [98]. In the L-PBF process, major defects are improper powder melting, oxidation and evaporation, and residual stress. Due to Mg's low heat absorption capacity, most of the laser energy is reflected, which leads to improper melting of Mg powder. Indeed, when the laser density increases, the melt pool temperature exceeds $1120^{\\circ} \\mathrm{C}$, significantly higher than Mg's boiling point. It is well established that the vapour pressure of $\\mathrm{Mg}$ alloy is $0.13 \\mathrm{KPa}$ at $650{ }^{\\circ} \\mathrm{C}$. At the melt pool temperature of $1120{ }^{\\circ} \\mathrm{C}$, vapour pressure increases up to $51 \\mathrm{KPa}$, eventually initiating and assisting the evaporation of Mg. Now researchers and industries concentrate on SLM because it produces high-precision components and fabricates highly complex shapes. However, the SLM additive manufacturing process is not recommended for producing large magnesium components due to its low deposition rate and limited build chamber size. In addition, powder preparation of Magnesium alloy is quite challenging, and these powders quickly oxide resulting in combustion and explosion. Therefore, in recent years the attention of researchers has been shifting towards Wire Arc Additive Manufacturing (WAAM) for the deposition of various grades of magnesium alloy.\n\n\\subsection*{4.1. Magnesium alloy system deposited using LPBF}\nCompared to studies on cast and wrought $\\mathrm{Mg}$ alloy manufacturing, few of them have been dedicated to additive manufacturing of $\\mathrm{Mg}$ alloy. This is because of the high cost associated with the customized production of atomized pre-alloyed powder, which is hundreds of times higher than the cost of customization for cast and wrought Mg alloys [99]. In present-day pure $\\mathrm{Mg}, \\mathrm{AZ91}, \\mathrm{AZ31}$ and WE43 Mg alloys are predominantly used in various automotive, aerospace and biomedical applications. This is due to their massive market demand, good printability using LPBF and WAAM, and obtained suitable mechanical properties for engineering structures and biomedical implants. AMed Mg alloys are not commercialized yet. However, in the near future, it will be commercialized because many laboratories and research institutes worldwide are studying additive manufacturing of $\\mathrm{Mg}$ alloy to understand the challenges during deposition [100].\n\n\\subsection*{4.1.1. Pure $m g$}\nNg et al. [88] from Hon Kong Polytechnic University deposited pure Mg in 2010 using the LPBF process with Nd: YAG laser. This study used various scan speeds and laser power to deposit single tracks to optimize process parameters. The irregular and coarse\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-16}\n\\end{center}\n\nFig. 18. Evaporation during deposition of Mg alloy using LPBF [92].\\\\\npowder size resulted in improper tracks. Interestingly soundtracks were successfully deposited with atomized fine and spherical shape powder under appropriate conditions. The grain size of LPBFed pure Mg is around 2-5 $\\mu \\mathrm{m}$ [101]. Previously Morishige et al. [102] achieved an $8-10 \\mu \\mathrm{m}$ grain size of pure Mg, processed by SPD. These studies confirmed that LPBF has the potential for grain refinement, a key advantage over the conventional manufacturing process. The study of pure $\\mathrm{Mg}$ deposited using LPBF also reported the hardness value lies between 60 and $89 \\mathrm{HV}(0.59-0.87 \\mathrm{MPa})$ [101]. In addition, high oxidation and cracks also occurred along the grain boundaries due development of tensile residual stress and distortion. The first thin and thick wall of pure $\\mathrm{Mg}$ was deposited with powder sizes 26 and $43 \\mu \\mathrm{m}$ using LPBF by Hu et al. [95] from Chongqing University. They reported insufficient energy density could not be used to print thin, thick walls of $\\mathrm{Mg}$ alloy.\n\nOn the other hand, the high energy density resulted in severe evaporation of pure Mg.", "start_char_idx": 250840, "end_char_idx": 255108, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "a2d814d7-c033-4b8d-8dda-fff09da8faf4": {"__data__": {"id_": "a2d814d7-c033-4b8d-8dda-fff09da8faf4", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "46fe9d2d-f09d-4d15-97d5-a5997db55104", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "ffea6ed672d540b2af252f7733e77fa911e101e7a722cba3dbe14e44320ab136", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "78cfa629-e466-41ee-a385-87f6e6fdd357", "node_type": "1", "metadata": {}, "hash": "41e493809b6f14489d9ab778b08655069bdffab266088a6fba3ec73840308c78", "class_name": "RelatedNodeInfo"}}, "text": "These studies confirmed that LPBF has the potential for grain refinement, a key advantage over the conventional manufacturing process. The study of pure $\\mathrm{Mg}$ deposited using LPBF also reported the hardness value lies between 60 and $89 \\mathrm{HV}(0.59-0.87 \\mathrm{MPa})$ [101]. In addition, high oxidation and cracks also occurred along the grain boundaries due development of tensile residual stress and distortion. The first thin and thick wall of pure $\\mathrm{Mg}$ was deposited with powder sizes 26 and $43 \\mu \\mathrm{m}$ using LPBF by Hu et al. [95] from Chongqing University. They reported insufficient energy density could not be used to print thin, thick walls of $\\mathrm{Mg}$ alloy.\n\nOn the other hand, the high energy density resulted in severe evaporation of pure Mg. Apart from LPBF, one more Additive manufacturing technique, the DLD AM process, is used to deposit pure Mg with irregular and coarse powder particles as feedstock materials, resulting in high porosity, cracks and poor surface finish $[84,85]$.\n\n\\subsection*{4.1.2. Magnesium-Aluminum ( $\\mathrm{Mg}-\\mathrm{Al}$ )}\nAZ31 $\\mathrm{Mg}$ alloy is the most useable commercial composition in the form of cast and wrought among all $\\mathrm{Mg}-\\mathrm{Al}-$ series $\\mathrm{Mg}$ alloys. However, in the field of LPBF, a few studies have been carried out on AZ31Mg alloy. Most studies on additive manufacturing of AZ31 Mg alloy are based on the wire arc additive manufacturing process. In fact, AZ91 Mg is mainly deposited using LPBF because Aluminium (Al) provides solid solution strengthening. In addition, the secondary phase $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ improves printability and also plays a vital role in grain refinement by superheating [103]. However, Pawlak et al. deposited AZ31 Mg alloy using the LPBF process and reported a very low porosity level of $>0.5 \\%$ [104]. Hence in the studies of AZ61 and AZ91 processed using LPBF, high density was also achieved, demonstrating the printability and acceptability of the $\\mathrm{Mg}-\\mathrm{Al}$ system. The results of $\\mathrm{AZ61}$ [105] and AZ91 represent the fine and equiaxed grain size of around 1-3 $\\mu \\mathrm{m}$ with random texture, vividly shown in Fig. 19 (a). The secondary phase $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ is uniformly distributed along the grain boundary, interconnecting with each other, which is depicted in Fig. 19 (b) [87,88]. Fig. 19 (c) shows the elongated grain boundary along the build direction. Moreover, the $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ intermetallic phase is distributed along the grain boundary, and some of the high density of sphericalshaped $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ with $100-300 \\mathrm{~nm}$ secondary phase nanoparticle is found inside the grain, as vividly depicted in Fig. 19 (d). The section summarises that the microstructure of the $\\mathrm{Mg}-\\mathrm{Al}$ system deposited using LPBF is tunable by adjusting the process parameters.\n\n\\subsection*{4.1.3. Magnesium-rare earth ( $M g-R E)$ based alloy system}\nAmong all the Mg-RE alloy systems, WE43 Mg alloy is most extensively deposited by the LPBF process for biomedical implant applications. As mentioned above, it has outstanding printability and a large processing window to achieve high density than AZ91Mg alloy. Moreover, Al is a neurotoxic element and is not recommended for biomedical application of fear of Alzheimer's disease. Therefore, WE43 Mg alloy is biocompatible and used in scaffolds, compressive plates and screws. Zumdick et al. [107] studied the microstructure of LPBFed WE43 Mg alloy and observed refined equiaxed grain, as shown in Fig. 20 (a); however, some of the abnormal grain growth occurred due to huge temperature difference between the bottom and top layer of deposited parts. The size of refined equiaxed grains was 1-3 $\\mu \\mathrm{m}$ with random orientation. Interestingly Bar et al.", "start_char_idx": 254316, "end_char_idx": 258204, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "78cfa629-e466-41ee-a385-87f6e6fdd357": {"__data__": {"id_": "78cfa629-e466-41ee-a385-87f6e6fdd357", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "a2d814d7-c033-4b8d-8dda-fff09da8faf4", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "48957ef23b20bab9e3d86410840209378755faae5134a98a0011d8778263e43a", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "769413ae-8c11-499f-ad05-bd26e6b890a9", "node_type": "1", "metadata": {}, "hash": "bd330d5e00247daef44a9876cf1744df20340553f10596cd5b9ca2b99ef27a4b", "class_name": "RelatedNodeInfo"}}, "text": "As mentioned above, it has outstanding printability and a large processing window to achieve high density than AZ91Mg alloy. Moreover, Al is a neurotoxic element and is not recommended for biomedical application of fear of Alzheimer's disease. Therefore, WE43 Mg alloy is biocompatible and used in scaffolds, compressive plates and screws. Zumdick et al. [107] studied the microstructure of LPBFed WE43 Mg alloy and observed refined equiaxed grain, as shown in Fig. 20 (a); however, some of the abnormal grain growth occurred due to huge temperature difference between the bottom and top layer of deposited parts. The size of refined equiaxed grains was 1-3 $\\mu \\mathrm{m}$ with random orientation. Interestingly Bar et al. studied the LPBFed WE43 in 2019 and found irregular firm and large basal textured of size $20.4 \\pm 6.3 \\mu \\mathrm{m}$, clearly shown in Fig. 20 (b) [108]. From this figure, equiaxed grain of $4.7 \\pm 0.4 \\mu \\mathrm{m}$ exhibiting random texture was\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-17}\n\\end{center}\n\nFig. 19. Microstructure of LPBFed AZ91 Mg alloy (a) fine equiaxed grain [106] (b) manganese rich precipitate [106] (c) EBSD Map, grain orientation [19] (d) spherical Mg ${ }_{17} \\mathrm{Al}_{12}$ nanoparticle [19].\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-18}\n\\end{center}\n\nFig. 20. Grain orientation Map of LPBFed WE43 Mg alloy (a) fine, equiaxed, and randomly orientated [111] (b) fine, equiaxed, and randomly orientated grains in the last melt pool [108] (c) large, irregular-shape, and basal-orientated grains [17] (d-e) EDXS maps acquired from the same material [17].\n\nobserved only at the centre of the last melt pool. Columnar grains were found only between the equiaxed and large irregular grains. During the successive solidification of the melt pool, equiaxed grain nucleate in partially cooled metal liquid ahead of the columnar grain region and start to transition from columnar to equiaxed [109]. From Fig. 20 (b), it is observed that the columnar grain with strong basal texture elongated along the build direction in region II and irregular grains with strong basal texture in region III. The same observation is also reported by Esmaily et al. [17]. In addition, they also noted that the deposition of WE43 on a wide range of energy density $\\left(120-300 \\mathrm{~J} / \\mathrm{mm}^{3}\\right)$ and strong-basal texture occurred for all, as shown in Fig. 20 (c). Fig. 20 (d \\& e) shows the EDXS mapping at two magnifications on obtained microstructure. The coarse flake contained Zr, Nd and Y, vividly demonstrated in Fig. 20 (d). While the finer flakes oxides contained $\\mathrm{Zr}$ and $\\mathrm{Y}$ without $\\mathrm{Nd}$, as shown in Fig. 20 (e). Despite the high density of RE oxides, the large and basal-orientated grains are still dominant in the LPBFed WE43. In other studies, a research team from Shanghai Jiaotong University customized the WE43 Mg alloy powder composition and developed an Mg-Gd alloy system [110,111]. After that, they deposited MgGd-based alloy using LPBF and observed equiaxed grain size around 1-2 $\\mu \\mathrm{m}$ with random orientations. They also concluded minimal oxide, less porosity and a high relative density of around 99.95\\% were obtained [112]. Liao et al. [110] deposited Mg-Gd Rare earth Mg alloy (Mg-10Gd-3Y-0.4Zr) alloy using a DLD process with coarse spherical powder size around 100-300 $\\mu \\mathrm{m}$.", "start_char_idx": 257480, "end_char_idx": 260978, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "769413ae-8c11-499f-ad05-bd26e6b890a9": {"__data__": {"id_": "769413ae-8c11-499f-ad05-bd26e6b890a9", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "78cfa629-e466-41ee-a385-87f6e6fdd357", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "97284e5e2e4e40b75d3814282464b397aa4259c799a904bec70ad808cf1f26f7", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "2833ee28-0440-4088-9370-42beff55e684", "node_type": "1", "metadata": {}, "hash": "f652b5df6794e032543a04632de3e6c8dd00059dfa11ec2c603e36749b987472", "class_name": "RelatedNodeInfo"}}, "text": "20 (e). Despite the high density of RE oxides, the large and basal-orientated grains are still dominant in the LPBFed WE43. In other studies, a research team from Shanghai Jiaotong University customized the WE43 Mg alloy powder composition and developed an Mg-Gd alloy system [110,111]. After that, they deposited MgGd-based alloy using LPBF and observed equiaxed grain size around 1-2 $\\mu \\mathrm{m}$ with random orientations. They also concluded minimal oxide, less porosity and a high relative density of around 99.95\\% were obtained [112]. Liao et al. [110] deposited Mg-Gd Rare earth Mg alloy (Mg-10Gd-3Y-0.4Zr) alloy using a DLD process with coarse spherical powder size around 100-300 $\\mu \\mathrm{m}$. They observed a randomly oriented equiaxed average grain size of $19 \\mu \\mathrm{m}$ with a higher fraction of pores. Interestingly both LPBF and DLD build MgGd-based alloy exhibited superior quality. However, the preferential grain growth of basal-oriented grains depends on the amount of Gd element, which should be $>10 \\mathrm{wt} \\%$ during deposition of both methods (DLD \\& LPBF) [113].\n\n\\subsection*{4.1.4. Magnesium-Zinc ( $M g-Z n)$ based alloy system}\n$\\mathrm{Mg}-\\mathrm{Zn}$-based alloys are less explored in $\\mathrm{AM}$ than $\\mathrm{Mg}-\\mathrm{Al}$ and $\\mathrm{Mg}$ - RE-alloys. This is attributed to the poor printability of $\\mathrm{Mg}-\\mathrm{Zn}$ resulting from the significantly lower eutectic temperature of $325^{\\circ} \\mathrm{C}$ and a large solidification range [114]. Wei et al. reported that less porosity was achieved at a $\\mathrm{Zn}$ concentration of $\\leq 1 \\mathrm{wt} \\%$ and high porosity at $\\geq 12 \\mathrm{wt} \\%$; nevertheless, when $\\mathrm{Zn}$ concentration is in the middle, i.e., $6 \\mathrm{wt} \\%$ (the Zn concentration in commercial ZK60 wrought alloy is $6 \\mathrm{wt} \\%$ ), high porosity and severe cracks on LPBF $\\mathrm{Mg}-\\mathrm{Zn}$ alloy made it unacceptable for application. The highest relative density of $97 \\%$ was achieved in LPBFed ZK60, which is relatively higher than reported so far at $94 \\%$ [115]. Therefore, this demonstration confirmed that $\\mathrm{Zn}$ should be used as a minor element in $\\mathrm{Mg}-\\mathrm{Zn}$-based alloy for deposition using the LPBF process. Other than this study, magnesium- Tin ( $\\mathrm{Mg}-\\mathrm{Sn})$ based alloy [116] and Magnesium-calcium ( $\\mathrm{Mg}-\\mathrm{Ca}$ ) based alloy [117] are also deposited using LPBF and investigated. The printability of $\\mathrm{Mg}-\\mathrm{Sn}$ and $\\mathrm{Mg}-\\mathrm{Ca}$ alloy is relatively better than $\\mathrm{Mg}-\\mathrm{Zn}$ alloy. They exhibit high eutectic temperatures $\\left(510{ }^{\\circ} \\mathrm{C}\\right.$ for $\\mathrm{Mg}-\\mathrm{Ca}$ and $466{ }^{\\circ} \\mathrm{C}$ for $\\mathrm{Mg} \\mathrm{Sn}$ ) and a low solidification range. Both alloys' preliminary results are insufficient to understand the mechanism involved in LPBF thoroughly. Therefore, comprehensive studies are required to realize the microstructure, mechanical properties and corrosion behaviour of LPBFed Mg alloy.\n\n\\subsection*{4.2. Microstructure and mechanical properties}\nZhang et al. [89] have selectively melted 56 samples of Mg-9 wt.\\% Al alloy by varying laser power and scan speeds using SLM. The process maps revealed that laser power of 10,15 and $20 \\mathrm{~W}$ and a scan speed of $0.01,0.02$ and $0.04 \\mathrm{~m} / \\mathrm{s}$ yielded high-quality specimens.", "start_char_idx": 260268, "end_char_idx": 263686, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "2833ee28-0440-4088-9370-42beff55e684": {"__data__": {"id_": "2833ee28-0440-4088-9370-42beff55e684", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "769413ae-8c11-499f-ad05-bd26e6b890a9", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "0f3ce80c11d729bc153a727a0990bc06302812b05939610a775a68e3cd5c2027", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "d08bac37-1f3c-4e5c-87f5-15893f68488b", "node_type": "1", "metadata": {}, "hash": "bce16db77c5963eaeffdd119f00aa1001f4aef1cd3cbdd333c5f9b50c63b04c6", "class_name": "RelatedNodeInfo"}}, "text": "Both alloys' preliminary results are insufficient to understand the mechanism involved in LPBF thoroughly. Therefore, comprehensive studies are required to realize the microstructure, mechanical properties and corrosion behaviour of LPBFed Mg alloy.\n\n\\subsection*{4.2. Microstructure and mechanical properties}\nZhang et al. [89] have selectively melted 56 samples of Mg-9 wt.\\% Al alloy by varying laser power and scan speeds using SLM. The process maps revealed that laser power of 10,15 and $20 \\mathrm{~W}$ and a scan speed of $0.01,0.02$ and $0.04 \\mathrm{~m} / \\mathrm{s}$ yielded high-quality specimens. The microstructure and mechanical properties of the\\\\\nsamples at four different scanning speeds, viz., 500, 750, 1000 and $1250 \\mathrm{~mm} / \\mathrm{s}$, were evaluated. The results revealed cellular structures of the $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ secondary phase around primary $\\mathrm{Mg}$ columnar grains, as shown in Fig. 21 (a). The addition of SiCnp columnar to equiaxed transition occurred due to heterogenous nucleation and controlled diffusion. As a result, fine equiaxed grains of 1-2 $\\mu \\mathrm{m}$ were achieved, as shown in Fig. 21 (b c \\& d). Interestingly 5\\% SiCnp addition exhibited relatively better yield strength, attributed to better bonding strength between SiCnp and AZ91D Mg matrix. In summary, the addition of SiCnp has refined the grain and homogenized the overall microstructure of bulk specimens.\n\nMoreover, with the increased scanning rate from 500 to $1250 \\mathrm{~mm} / \\mathrm{s}, \\mathrm{Mg}$ powders remained unmelted. This is related to sintering rather than melting due to insufficient energy input. As a result of the un-melting of $\\mathrm{Mg}$ powders, the mechanical properties deteriorated significantly with increased scanning speed [118].\n\nSimilarly, the element vaporization of $\\mathrm{Mg}-\\mathrm{Zn}-\\mathrm{Zr} \\mathrm{Mg}$ alloy during SLM was studied by Wei et al. [119] due to element vaporization induced by $\\mathrm{Zr}$, the Wt. \\% of SLMed parts obtained at scanning speed viz., $300-900 \\mathrm{~mm} / \\mathrm{s}$ decreased relatively compared to the ZK60 powders. Consequently, the relative density dropped drastically from $94 \\%$ for a scanning speed of $300 \\mathrm{~mm} / \\mathrm{s}$ to $82 \\%$ at $900 \\mathrm{~mm} / \\mathrm{s}$ [119]. $\\mathrm{Mg} 0.5 \\mathrm{Zn}$ and $\\mathrm{Mg} 1 \\mathrm{Zn}$ were selectively melted using the Mg and $\\mathrm{Zn}$ powder feedstock material. The mechanical properties of LPBFed $\\mathrm{Mg}-\\mathrm{Zn}$ alloys were comparable to that of as- cast Mg alloys. In addition, visible keyhole pores were observed due to evaporation and incomplete melting of $\\mathrm{Mg}$ and $\\mathrm{Zn}$ powders [120]. The microstructure and mechanical properties of L-PBF Mg alloys are listed in Table 3.\n\n\\subsection*{4.3. Corrosion behaviour of LPBFed Mg alloy}\nZK60 Mg powders were selectively laser melted at four different volume energy densities viz $420,500,600$ and $750 \\mathrm{~J} / \\mathrm{mm}^{3}$. The samples deposited at $600 \\mathrm{~J} / \\mathrm{mm}^{3}$ exhibited relatively better relative density and microhardness of $97 \\%$ and $89.2 \\mathrm{HV}$, respectively. In addition, this condition of ZK60 samples evinced a corrosion rate of $0.006 \\mathrm{ml} / \\mathrm{cm}^{2} \\mathrm{~h}$ during immersion in Hank's solution, which is significantly lower when compared to other SLMed ZK60 samples [123].", "start_char_idx": 263077, "end_char_idx": 266500, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "d08bac37-1f3c-4e5c-87f5-15893f68488b": {"__data__": {"id_": "d08bac37-1f3c-4e5c-87f5-15893f68488b", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "2833ee28-0440-4088-9370-42beff55e684", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "3f305a3483fe821c75543bd328ddf02795d4037d91871e043e17ab115720b456", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "a7ef2396-6eab-4f98-9de6-f670223c0fab", "node_type": "1", "metadata": {}, "hash": "f89ab90efdd3e5d69ace1fba955a927fe32995e87f990919d549b5c1dcc63584", "class_name": "RelatedNodeInfo"}}, "text": "The microstructure and mechanical properties of L-PBF Mg alloys are listed in Table 3.\n\n\\subsection*{4.3. Corrosion behaviour of LPBFed Mg alloy}\nZK60 Mg powders were selectively laser melted at four different volume energy densities viz $420,500,600$ and $750 \\mathrm{~J} / \\mathrm{mm}^{3}$. The samples deposited at $600 \\mathrm{~J} / \\mathrm{mm}^{3}$ exhibited relatively better relative density and microhardness of $97 \\%$ and $89.2 \\mathrm{HV}$, respectively. In addition, this condition of ZK60 samples evinced a corrosion rate of $0.006 \\mathrm{ml} / \\mathrm{cm}^{2} \\mathrm{~h}$ during immersion in Hank's solution, which is significantly lower when compared to other SLMed ZK60 samples [123]. The better mechanical properties and corrosion resistance obtained in the SLM ZK60 sample for $600 \\mathrm{~J} / \\mathrm{mm} 3$ of Ev are attributed to the fine grain microstructure, and homogeneous nucleation of $\\mathrm{Mg}$ received resulted from rapid solidification [124]. $\\mathrm{Mg} 0.5 \\mathrm{Zn}$ and $\\mathrm{Mg} 1 \\mathrm{Zn}$ samples deposited using the LPBF process exhibited a corrosion rate of $\\sim 0.18 \\mathrm{ml} / \\mathrm{cm}^{2} / \\mathrm{h}$. The corrosion resistance of $\\mathrm{Mg}-\\mathrm{Zn}$ samples was significantly lesser compared to the most commonly employed $\\mathrm{Mg}-\\mathrm{Y}-\\mathrm{RE} \\mathrm{Mg}$ alloy system in biomedical applications [125]. Liu et al. [126] manufactured biodegradable WE43 Mg scaffolds comprising diamond-shaped unit cells as building blocks using the LSM technique. The bottom and top\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_7e5fbe1213c12de51fd6g-19}\n\nFig. 21. Typical microstructures of the LPBF-processed specimens (scanning speed $=200 \\mathrm{~mm} / \\mathrm{s}$ ) [118].\n\nTable 3\n\nMicrostructure and mechanical properties of various grades of magnesium alloy powder processed by LPBF.\n\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|}\n\\hline\nMg Alloy & UTS (MPa) & YS (MPa) & Microstructure & \\begin{tabular}{l}\nHardness \\\\\n$(\\mathrm{Hv})$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nElongation \\\\\n$(\\%)$ \\\\\n\\end{tabular} & Ref.", "start_char_idx": 265798, "end_char_idx": 267912, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "a7ef2396-6eab-4f98-9de6-f670223c0fab": {"__data__": {"id_": "a7ef2396-6eab-4f98-9de6-f670223c0fab", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "d08bac37-1f3c-4e5c-87f5-15893f68488b", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "a46479cf1c29027aecc69d0042b8514fd8b2ccc6bdb8bbf20925e44576aafd07", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "3383bc3f-918c-4591-acc0-d3cd131e4510", "node_type": "1", "metadata": {}, "hash": "21225e40066ac12bfe0f2dbdefe9b35eaaf547c56edf183c17e4afdf443e3a72", "class_name": "RelatedNodeInfo"}}, "text": "21. Typical microstructures of the LPBF-processed specimens (scanning speed $=200 \\mathrm{~mm} / \\mathrm{s}$ ) [118].\n\nTable 3\n\nMicrostructure and mechanical properties of various grades of magnesium alloy powder processed by LPBF.\n\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|}\n\\hline\nMg Alloy & UTS (MPa) & YS (MPa) & Microstructure & \\begin{tabular}{l}\nHardness \\\\\n$(\\mathrm{Hv})$ \\\\\n\\end{tabular} & \\begin{tabular}{l}\nElongation \\\\\n$(\\%)$ \\\\\n\\end{tabular} & Ref. \\\\\n\\hline\nAZ31B & $207 \\pm 5$ & $183 \\pm 3$ & Non-uniform fine $\\alpha$-Mg, equiaxed and elongated grain formed with $\\gamma \\mathrm{MgMg}_{17} \\mathrm{Al}_{12}$ eutectic phase & $64 \\pm 0.5$ & 7.7 & $[82]$ \\\\\n\\hline\nAZ91D & $274 \\pm 16$ & $237 \\pm 17$ & $\\alpha-\\mathrm{Mg}$ Equiaxed grain formed with $\\beta-\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ eutectic phase & $85 \\pm 0.2$ & 3 & $[121]$ \\\\\n\\hline\nAZ61 & $239.3 \\pm 20$ & $216 \\pm 17$ & \\begin{tabular}{l}\n$\\alpha-\\mathrm{Mg}$ Equiaxed grain and entirely divorced $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ eutectic phase distributed along the grain \\\\\nboundary \\\\\n\\end{tabular} & - & $2-3$ & $[105]$ \\\\\n\\hline\n$\\mathrm{Mg}$ & - & - & Size of the microstructure increase with laser density & $0.59 \\mathrm{Gpa}$ & - & $[93]$ \\\\\n\\hline\nWE43 & 312 & 194 & Elongated Equiaxed fine-grain formed on the melt pool boundaries & & 14 & $[122]$ \\\\\n\\hline\nZK60 & & & \\begin{tabular}{l}\nWhen increasing the energy density, dendrites to columnar grain formed with $\\beta M g_{7} \\mathrm{Zn}_{3}$ \\\\\nprecipitation \\\\\n\\end{tabular} & $70.1-85$ & & $[92]$ \\\\\n\\hline\n$\\mathrm{Mg}-9 \\mathrm{Al}$ & - & - & $\\alpha$-Mg equiaxed grain with $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}, \\mathrm{MgO}$ and $\\mathrm{Al}_{2} \\mathrm{O}_{3}$ precipitation found at the grain boundaries & $66-85$ & - & $[89]$ \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\nsections of struts displayed rose-like grains, and cellular grain morphology corroborated moderate and high-temperature gradients. In addition, the $\\mathrm{Y}_{23}^{\\mathrm{O}}$ phase was uniformly distributed in a bulk Mg matrix within each melt pool, owing to Marangoni convection. Biomechanical properties revealed that compressive yield strength (CYS) decreased chronologically from $22 \\mathrm{MPa}$ to $13 \\mathrm{MPa}$ when tested after 7- and 24-days immersion [127]. The AMed WE43 samples exhibited level zero and level one cytotoxicity corresponding to 24,48 and $72 \\mathrm{~h}$ of immersion time. The corrosion rate (mm/year) of various LPBFed, Mg alloy grades is shown in Fig. 22. The corrosion rate of multiple grades of $\\mathrm{Mg}$ alloy obtained by different processes such as coating, burnishing, casting WAAM and SLM process is depicted in Fig. 23. From this figure, it is clear that incorporating coatings and WAAM has reduced the corrosion rate. It can also observe that phosphate-based biocompatible coatings effectively reduce the degradation rate significantly.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-20}\n\\end{center}\n\nFig.", "start_char_idx": 267444, "end_char_idx": 270472, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "3383bc3f-918c-4591-acc0-d3cd131e4510": {"__data__": {"id_": "3383bc3f-918c-4591-acc0-d3cd131e4510", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "a7ef2396-6eab-4f98-9de6-f670223c0fab", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "62e2e59ac4f2ce634284214f5b1528a45446bce1cb496178917305125f13e066", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "ab791615-b307-480c-b6d9-838468ab8af9", "node_type": "1", "metadata": {}, "hash": "0019e4c96ef0aa24bdcc1749094ec7bddbe9ee0948c9dd16de357bccf043ff77", "class_name": "RelatedNodeInfo"}}, "text": "The AMed WE43 samples exhibited level zero and level one cytotoxicity corresponding to 24,48 and $72 \\mathrm{~h}$ of immersion time. The corrosion rate (mm/year) of various LPBFed, Mg alloy grades is shown in Fig. 22. The corrosion rate of multiple grades of $\\mathrm{Mg}$ alloy obtained by different processes such as coating, burnishing, casting WAAM and SLM process is depicted in Fig. 23. From this figure, it is clear that incorporating coatings and WAAM has reduced the corrosion rate. It can also observe that phosphate-based biocompatible coatings effectively reduce the degradation rate significantly.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-20}\n\\end{center}\n\nFig. 22. The corrosion rate of various grades of LPBFed mg alloy [103-105].\n\n\\subsection*{4.4. Post-processing}\nGenerally, some major concerns, such as the development of residual stress, oxidation, vaporization and under-melting, occurred during the LPBF process. These defects deteriorate the mechanical properties. Benn et al. [128] evaluated the corrosion behaviour and cytocompatibility of printed, etched and machined WE43Mg samples processed by LPBF. The hydrogen evolution rate of these samples after 20 days of immersion was found to be $\\sim 140, \\sim 68$ and $\\sim 85 \\mathrm{~mL} / \\mathrm{cm}^{2}$, respectively. While the \\% relative to toxic control tested by lactate dehydrogenase (LDH) assay of the samples were $\\sim 76, \\sim 48$ and $\\sim 47$, respectively. It is observed that despite the significant increase in corrosion resistance of post-processed samples, their biocompatibility is inferior to that of printed samples. Esmaily et al. [17] evaluated the microstructure and mechanical properties of as-built and HIP-processed WE43 Mg alloy. Star-shaped Mg-rich particles and Y and Zr-rich particles were observed in as-built and HIP conditions. In addition, the $\\mathrm{Mg}_{24} \\mathrm{Y}_{5}$ phase present in as-build WE43 dissolved due to HIP treatment, along with the appearance of $\\mathrm{Mg}_{41} \\mathrm{Nd}_{5}$ confirmed by XRD, SEM-EDS and STEM-EDS. Interestingly, HIP treatment significantly reduced the porosity of as-built WE43 Mg. However, the dynamic mechanical behaviour of as-built and HIP-treated WE43 Mg were comparable when tested using Split Hopkinson's pressure bar apparatus. Esmaily et al. subjected SLMed WE43 Mg alloy to postprocessing techniques such as hot isostatic pressing (HIP) and heat treatment (HT). EBSD micrographs revealed firm preferential basal solid texture (0001) for SLM, SLM + HIP and SLM + HIP + HT WE43 Mg samples along the build direction vividly shown in Fig. 24. In addition, due to the higher solidification rate, a common trait of the SLM process, sub-micron cellular structures were observed in WE43 Mg. Hot isostatic pressing of SLMed WE43 Mg alloys successfully reduced the porosity. As a result, the corrosion resistance of SLM + HIP was relatively higher than the SLMed sample. However, the corrosion resistance of SLMed and postprocessed SLMed samples is significantly inferior compared to cast WE43 Mg [129].\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-20(1)}\n\\end{center}\n\nFig. 23. Improving the corrosion rate of various grades of Mg alloy obtained by different processes. MEM represents the Minimum Essential Medium solution, SFD represents the simulated body fluid solution, and DMEM represents Dulbecco's modified Eagle Medium solution.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-21}\n\\end{center}\n\nFig. 24.", "start_char_idx": 269751, "end_char_idx": 273352, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "ab791615-b307-480c-b6d9-838468ab8af9": {"__data__": {"id_": "ab791615-b307-480c-b6d9-838468ab8af9", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "3383bc3f-918c-4591-acc0-d3cd131e4510", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "979deb815c3cb410269e71e8a02ca21ed3c5f6a1a01bfc1c44b1bae812028e01", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "eb5815c8-6c62-491a-930c-1937697a77a7", "node_type": "1", "metadata": {}, "hash": "2561dfc5ef572dd90fa64e2a0eaf38d2daa1cfd95746d14bdeec0e3bc6eda80b", "class_name": "RelatedNodeInfo"}}, "text": "As a result, the corrosion resistance of SLM + HIP was relatively higher than the SLMed sample. However, the corrosion resistance of SLMed and postprocessed SLMed samples is significantly inferior compared to cast WE43 Mg [129].\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-20(1)}\n\\end{center}\n\nFig. 23. Improving the corrosion rate of various grades of Mg alloy obtained by different processes. MEM represents the Minimum Essential Medium solution, SFD represents the simulated body fluid solution, and DMEM represents Dulbecco's modified Eagle Medium solution.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-21}\n\\end{center}\n\nFig. 24. EBSD analysis of the samples in the as-SLMed, SLM + HIP and SLM + HIP + HT conditions (1) at $20 \\mathrm{~W}$ with $200 \\mathrm{~mm} / \\mathrm{s}$ process speed (2) at $80 \\mathrm{~W}$ with $400 \\mathrm{~mm} / \\mathrm{s}$ [process speed (3) $120 \\mathrm{~W}$ with $600 \\mathrm{~mm} / \\mathrm{s}$ process speed (4) $160 \\mathrm{~W}$ with $800 \\mathrm{~mm} / \\mathrm{s}$ process speed (5) $200 \\mathrm{~W}$ with $1000 \\mathrm{~mm} / \\mathrm{s}$ process speed (6) $240 \\mathrm{~W}$ with $1200 \\mathrm{~mm} / \\mathrm{s}$ process speed (7) at $280 \\mathrm{~W}$ with $1400 \\mathrm{~mm} / \\mathrm{s}$ process speed [17].\n\nZumdick et al. [107] investigated the mechanical properties of additively manufactured, powder extruded (PE) and as-cast WE43 Mg. Lueder bands were observed along the length of AM and PE WE43 Mg samples, eventually resulting in the yield point phenomenon. Indeed, a fine microstructure of about $\\sim 1 \\mu \\mathrm{m}$ was responsible for significantly higher mechanical properties of AM and PE samples' than the as-cast WE43 Mg [130]. Salehi et al. [96] developed green ZK60 compacts using capillary-mediated 3D printing followed by sintering. The sintering temperature of $573{ }^{\\circ} \\mathrm{C}$ and holding time of $60 \\mathrm{~h}$ was optimum to achieve the highest values of ultimate compressive strength (UCS) $174.30 \\mathrm{MPa}$, compressive yield strength CYS $39.87 \\mathrm{MPa}$, and $33.51 \\%$ elongation. Kopp et al. [131] fabricated WE43 Mg using LPBF and postprocessed it with additional heat treatment and PEO coating to improve the biomechanical properties. PEO coating substantially enhanced compressive strength and corrosion resistance compared to the uncoated samples. In contrast, heat treatment resulted only in marginal improvement of the biomechanical properties of LPBF Mg alloy.\n\n\\subsection*{4.5. Comparison of WAAMed and LPBFed Mg alloy}\nThis review article explains the microstructure, mechanical properties, corrosion performance and post-processing of $\\mathrm{Mg}$ alloy deposited using wire arc additive manufacturing (WAAM) and laser powder bed fusion (LPBF) processes. In both approaches, the nature and distribution of heat sources are entirely different. In the WAAM process, heat is generated in the form of the arc due to an electrical short circuit; therefore, the distribution of the heat source is unsymmetric and can be predicted by a double ellipsoidal heat source model [132], while in the LPBF heat produced by solid laser (Nd-YAG), the distribution of laser heat is symmetric and can be predicted using Gaussian heat source model [133]. Consequently, the difference in the cooling rate of both processes is significant during deposition, which can influence the type and size of the grains. Therefore, the mechanical properties and corrosion performance of $\\mathrm{Mg}$ alloy, deposited by both processes, are not even similar, but whole properties, such as thermal, chemical and mechanical, are different [134].", "start_char_idx": 272632, "end_char_idx": 276334, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "eb5815c8-6c62-491a-930c-1937697a77a7": {"__data__": {"id_": "eb5815c8-6c62-491a-930c-1937697a77a7", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "ab791615-b307-480c-b6d9-838468ab8af9", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "a6610fffc2334c2a78ea6de18e9b59a45e4cce4abb30b7b37896a9699334607f", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "831181c0-1c6f-4cd5-8d98-5202c994988a", "node_type": "1", "metadata": {}, "hash": "1b2fa5e3ae511e6b958d0eda538aa8d562016606ad2748ac6dea968ef1020882", "class_name": "RelatedNodeInfo"}}, "text": "In both approaches, the nature and distribution of heat sources are entirely different. In the WAAM process, heat is generated in the form of the arc due to an electrical short circuit; therefore, the distribution of the heat source is unsymmetric and can be predicted by a double ellipsoidal heat source model [132], while in the LPBF heat produced by solid laser (Nd-YAG), the distribution of laser heat is symmetric and can be predicted using Gaussian heat source model [133]. Consequently, the difference in the cooling rate of both processes is significant during deposition, which can influence the type and size of the grains. Therefore, the mechanical properties and corrosion performance of $\\mathrm{Mg}$ alloy, deposited by both processes, are not even similar, but whole properties, such as thermal, chemical and mechanical, are different [134]. Therefore, the next section of this\\\\\narticle explores the differences between WAAMed and LPBFed Mg specimens in terms of microstructural, mechanical properties and corrosion performance.\n\n\\subsection*{4.5.1. Microstructural and mechanical properties and corrosion performance}\nThe microstructure induced by both processes, WAAM and LPBF, are different owing to the nature of the heat source and cooling rate. The LBPFed Mg alloy mainly exhibited finer grains due to a high cooling rate of approximately $40 \\mathrm{~K} / \\mu \\mathrm{s}$ [135]. However, the grain size increases from the bottom to the top section of the thin wall [136]. This is because heat accumulation due to preheating the previous layer reduced the thermal gradient, which is responsible for the low cooling rate. Consequently, grain size increases towards to deposition direction [137]. Massive grain size variation affects the mechanical properties of LPBFed Mg alloy components. The microstructure depends on process parameters and the environmental condition of the LPBF build chamber [138]. Generally, an AZ series (AZ31, AZ80M AZ91 of Mg alloy, deposited using the LPBF process, exhibited the massive secondary phase particles such as $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ [118] and in most studied Mg alloy WE43 composed of $\\mathrm{Mg}_{41} \\mathrm{Nd}_{5}, \\mathrm{Mg}_{3} \\mathrm{Nd}$ particles [108] with globular shape in the considerable amount owing to variation thermal history during deposition, which is comparatively brittle, reduced the ductility of $\\mathrm{Mg}$ alloy. After analysis of the microstructure of LPBFed Mg alloy, it is noted that no literature shows the equiaxed microstructure.\\\\\nHowever, in the WAAMed Mg alloy, maximum literature showed the negligible formation of brittle $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ secondary phase particles with complete equiaxed grains, which can enhance the ductility of deposited components [58]. Therefore, the WAAMed \\% EL is significantly higher than LPBF Mg specimens, as shown in Fig. 25.\n\nIn the wire arc additive manufacturing field, most AZ series of $\\mathrm{Mg}$ alloy are deposited using a cold metal transfer-based WAAM process. This is because of comparatively lower heat input which is suitable for low melting point temperature $\\mathrm{Mg}$ alloy. Due to low heat input and comparatively higher thermal gradient, the grains are homogeneous, which is beneficial for mechanical properties. However, from the literature survey, it is noted that only CMTWAAM [69], GTA-WAAM [59] and UPF-WAAMed [58] Mg specimens exhibited equiaxed grain with negligible brittle secondary phase particles. But GTAW, MIG, GMAW based WAAM specimens showed vertical columnar dendrites; the direction changed columnar dendrites, and equiaxed dendrites in sequence; their heights are approximately $0.90 \\mathrm{~mm}, 1.50 \\mathrm{~mm}$ and $2.20 \\mathrm{~mm}$. This is because of high heat input [69].\n\nMoreover, the inhomogeneous microstructure and massive formation of secondary phase particles are caused for lower mechanical properties in LBPFed alloy. However, the smaller grains and secondary phase particles enhanced the corrosion resistance of $\\mathrm{Mg}$ alloy. Therefore, the corrosion resistance of LPBFed Mg alloy is higher than that of WAAMed Mg specimen, as seen in Table 4.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-22}\n\\end{center}\n\nFig. 25.", "start_char_idx": 275478, "end_char_idx": 279768, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "831181c0-1c6f-4cd5-8d98-5202c994988a": {"__data__": {"id_": "831181c0-1c6f-4cd5-8d98-5202c994988a", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "eb5815c8-6c62-491a-930c-1937697a77a7", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "9accda7d4b3c96356c665693f72824ea455fbbe9327c09d689247666429a3d5d", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "bba1cc5b-ae73-41ba-b5f8-1842b2053080", "node_type": "1", "metadata": {}, "hash": "9686b99b80f8fae0b755d9e8957fe04811bf3f12299a598b638828b3d495c9ba", "class_name": "RelatedNodeInfo"}}, "text": "This is because of high heat input [69].\n\nMoreover, the inhomogeneous microstructure and massive formation of secondary phase particles are caused for lower mechanical properties in LBPFed alloy. However, the smaller grains and secondary phase particles enhanced the corrosion resistance of $\\mathrm{Mg}$ alloy. Therefore, the corrosion resistance of LPBFed Mg alloy is higher than that of WAAMed Mg specimen, as seen in Table 4.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-22}\n\\end{center}\n\nFig. 25. Comparison of mechanical properties between (a) WAAMed Mg alloy (b) LPBFed Mg alloy.\n\nTable 4\n\nSummary of corrosion properties of LPBFed and WAAM Mg alloy.\n\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|}\n\\hline\nMg Alloys & Deposition process & $\\mathrm{E}_{\\text {corr }}(\\mathrm{V})$ & $\\mathrm{I}_{\\text {corr }}\\left(\\mathrm{mA} / \\mathrm{cm}^{2}\\right)$ & Solution & Corrosion rate (Pw, mpy) & Refs.", "start_char_idx": 279224, "end_char_idx": 280173, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "bba1cc5b-ae73-41ba-b5f8-1842b2053080": {"__data__": {"id_": "bba1cc5b-ae73-41ba-b5f8-1842b2053080", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "831181c0-1c6f-4cd5-8d98-5202c994988a", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "30210c1d6708e116ec38fa8bd987c9511bb31780d109c539d53bff07f891db56", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "f964a77c-d472-40b7-9511-39696d9844d8", "node_type": "1", "metadata": {}, "hash": "66865c1b54d19fbb8200a307e0a47b20eb54271a62071181996f3a794057154e", "class_name": "RelatedNodeInfo"}}, "text": "\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-22}\n\\end{center}\n\nFig. 25. Comparison of mechanical properties between (a) WAAMed Mg alloy (b) LPBFed Mg alloy.\n\nTable 4\n\nSummary of corrosion properties of LPBFed and WAAM Mg alloy.\n\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|}\n\\hline\nMg Alloys & Deposition process & $\\mathrm{E}_{\\text {corr }}(\\mathrm{V})$ & $\\mathrm{I}_{\\text {corr }}\\left(\\mathrm{mA} / \\mathrm{cm}^{2}\\right)$ & Solution & Corrosion rate (Pw, mpy) & Refs. \\\\\n\\hline\nPure Mg & LPBF (SS:500 mm/s) & -1.52 & $74.0 \\times 10^{-3}$ & HBSS & $2.8(\\mathrm{~mm} / \\mathrm{y})$ & [139] \\\\\n\\hline\nPure $\\mathrm{Mg}$ & LPBF (SS:750 mm/s) & -1.53 & $114.1 \\times 10^{-3}$ & HBSS & $4.7(\\mathrm{~mm} / \\mathrm{y})$ & [139] \\\\\n\\hline\nPure Mg & LPBF (SS:1000 mm/s) & -1.54 & $162.1 \\times 10^{-3}$ & HBSS & $9.6(\\mathrm{~mm} / \\mathrm{y})$ & [139] \\\\\n\\hline\nPure Mg & LPBF (SS: $1250 \\mathrm{~mm} / \\mathrm{s})$ & -1.53 & $176.6 \\times 10^{-3}$ & HBSS & $32.5(\\mathrm{~mm} / \\mathrm{y})$ & [139] \\\\\n\\hline\nAZ61 & $\\mathrm{SLM}(\\mathrm{SS}=22 \\mathrm{~mm} / \\mathrm{s})$ & $-1.50 \\pm 0.02$ & $59 \\times 10^{-3}$ & SBF & 1.45 & [140] \\\\\n\\hline\nAZ61-1.0 RGO/MgO & $\\mathrm{SLM}(\\mathrm{SS}: 22 \\mathrm{~mm} / \\mathrm{s})$ & $-1.47 \\pm 0.02$ & $199 \\times 10^{-3}$ & SBF & 2.19 & [140] \\\\\n\\hline\nAZ61-2.0 RGO/MgO & $\\mathrm{SLM}(\\mathrm{SS}: 22 \\mathrm{~mm} / \\mathrm{s})$ & $-1.48 \\pm 0.03$ & $132 \\times 10^{-3}$ & SBF & 1.99 & [140] \\\\\n\\hline\nAZ61-3.0 RGO/MgO & SLM (SS:22 mm/s) & $-1.48 \\pm 0.05$ & $42 \\times 10^{-3}$ & SBF & 1.05 & [140] \\\\\n\\hline\nAZ61-4.0 RGO/MgO & SLM (SS:22 mm/s) & $-1.48 \\pm 0.02$ & $105 \\times 10^{-3}$ & SBF & 1.32 & [140] \\\\\n\\hline\nAZ61-0.6GO & SLM (SS:15 mm/s) & $-1.57 \\pm 0.02$ & $(118 \\pm 13) \\times 10^{-3}$ & SBF & $2.67 \\pm 0.30(\\mathrm{~mm} / \\mathrm{y})$ & [141] \\\\\n\\hline\nAZ61 & SLM (SS:15 mm/s) & $-1.54 \\pm 0.02$ & $(50 \\pm 4) \\times 10^{-3}$ & SBF & $1.21 \\pm 0.09(\\mathrm{~mm} / \\mathrm{y})$ & [141] \\\\\n\\hline\nAZ61-0.2GO & SLM (SS:15 mm/s) & $-1.54 \\pm 0.02$ & $(89 \\pm 12) \\times 10^{-3}$ & SBF & $2.03 \\pm 0.27(\\mathrm{~mm} / \\mathrm{y})$ & [141] \\\\\n\\hline\nAZ61-0.4GO & SLM (SS:15 mm/s) & $-1.52 \\pm 0.03$ & $(212 \\pm 16) \\times 10^{-3}$ & SBF & $4.84 \\pm 0.36(\\mathrm{~mm} / \\mathrm{y})$ & [141] \\\\\n\\hline\nAZ91D & $\\mathrm{BJ}+\\mathrm{TTS}-2\\left(680^{\\circ} \\mathrm{C}\\right)$ & -1.535 & $79.8 \\times 10^{-3}$ & $3.5 \\%$ wt.", "start_char_idx": 279655, "end_char_idx": 282072, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "f964a77c-d472-40b7-9511-39696d9844d8": {"__data__": {"id_": "f964a77c-d472-40b7-9511-39696d9844d8", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "bba1cc5b-ae73-41ba-b5f8-1842b2053080", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "928bdf16e2efd97715ee295a95f6d1b10a180107c11eff05b25e5e9d93c3ec63", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "7f3dcdeb-5ae5-4879-bf15-44176fe4c674", "node_type": "1", "metadata": {}, "hash": "a19add8ec7f1e5685d87235accd0c601d2f4de3e2b2dad31480ee6450eb7310e", "class_name": "RelatedNodeInfo"}}, "text": "$\\mathrm{NaCl}$ & $120 \\pm 12.8(\\mathrm{~mm} / \\mathrm{y})$ & [142] \\\\\n\\hline\nAZ91D & $\\mathrm{BJ}+$ TTS $-1\\left(660^{\\circ} \\mathrm{C}\\right)$ & -1.599 & $149 \\times 10^{-3}$ & 3.5\\%wt. $\\mathrm{NaCl}$ & $172 \\pm 17.6(\\mathrm{~mm} / \\mathrm{y})$ & [142] \\\\\n\\hline\nZK30 & SLM (SS:500 mm/min) & -1.57 & 0.10 & SBF & $3.70 \\pm 0.10$ & [143] \\\\\n\\hline\nZK30-0.3GO & SLM (SS:500 mm/min) & -1.59 & 0.33 & SBF & $10.8 \\pm 0.09$ & [143] \\\\\n\\hline\nZK30-0.6GO & SLM (SS:500 mm/min) & -1.65 & 0.10 & SBF & $3.38 \\pm 0.07$ & [143] \\\\\n\\hline\nZK30-0.9GO & SLM (SS:500 mm/min) & -1.51 & 0.49 & SBF & $15.64 \\pm 0.13$ & [143] \\\\\n\\hline\nAZ31 & Hot-rolled & -1.56 & 611.62 & $3.5 \\mathrm{wt} \\% \\mathrm{NaCl}$ & $13.62(\\mathrm{~mm} / \\mathrm{y})$ & [59] \\\\\n\\hline\nAZ31 & WAAM-GTA & -1.60 & 154.12 & $3.5 \\mathrm{wt} \\% \\mathrm{NaCl}$ & $3.43(\\mathrm{~mm} / \\mathrm{y})$ & [59] \\\\\n\\hline\nAZ91 & WAAM & -1.522 & 3.256 & $0.1 \\mathrm{M} \\mathrm{NaCl}$ & $0.73(\\mathrm{~mm} / \\mathrm{y})$ & [60] \\\\\n\\hline\nAZ91 & WAAM + HT & -1.552 & 2.751 & $0.1 \\mathrm{M} \\mathrm{NaCl}$ & $0.62(\\mathrm{~mm} / \\mathrm{y})$ & [60] \\\\\n\\hline\nAZ91 & WAAM $(24 \\mathrm{~h})$ & -1.530 & 2.971 & $0.1 \\mathrm{M} \\mathrm{NaCl}$ & $0.57(\\mathrm{~mm} / \\mathrm{y})$ & [60] \\\\\n\\hline\nAZ91 & WAAM + HT (24h) & -1.546 & 1.447 & $0.1 \\mathrm{M} \\mathrm{NaCl}$ & $0.42(\\mathrm{~mm} / \\mathrm{y})$ & [60] \\\\\n\\hline\nAZ31 & CMT-WAAM & -1.555 & 0.1 & $0.5 \\mathrm{wt} \\% \\mathrm{NaCl}$ & $2.28(\\mathrm{~mm} / \\mathrm{y})$ & [69] \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n\nFig. 26 shows the comparison of deposited Mg alloy using LBPF and WAAM process and processed LPBFed and WAAMed Mg alloy. This figure shows that the deposited AZ91 Mg alloy specimens using the WAAM process exhibited a colossal amount of secondary phase particles such as $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ and $\\mathrm{Al}_{8} \\mathrm{Mn}_{5}$; after heat treatment, most of these brittle phases dissolved in the primary phase with uniform distribution. Consequently, the strength and elongation \\% improved. In contrast, in SLMed AZ61 specimens, columnar grains with $\\alpha-\\mathrm{Mg}$ and $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ phases were.", "start_char_idx": 282073, "end_char_idx": 284228, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "7f3dcdeb-5ae5-4879-bf15-44176fe4c674": {"__data__": {"id_": "7f3dcdeb-5ae5-4879-bf15-44176fe4c674", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "f964a77c-d472-40b7-9511-39696d9844d8", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "9aa864e833a89bce149c844f1e4791897c6e42382a8b6ecc8a44000c493cf563", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "bccfce7d-f6d4-4c66-bb3d-43b80b3f417e", "node_type": "1", "metadata": {}, "hash": "a6d34a51649ca420e5c49f910dc3307eba26c73ab2c726cd99bac08d709554d6", "class_name": "RelatedNodeInfo"}}, "text": "26 shows the comparison of deposited Mg alloy using LBPF and WAAM process and processed LPBFed and WAAMed Mg alloy. This figure shows that the deposited AZ91 Mg alloy specimens using the WAAM process exhibited a colossal amount of secondary phase particles such as $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ and $\\mathrm{Al}_{8} \\mathrm{Mn}_{5}$; after heat treatment, most of these brittle phases dissolved in the primary phase with uniform distribution. Consequently, the strength and elongation \\% improved. In contrast, in SLMed AZ61 specimens, columnar grains with $\\alpha-\\mathrm{Mg}$ and $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ phases were. In addition, HIP post-process induced grain growth of SLMed AZ61 $\\mathrm{Mg}$ alloy at $450{ }^{\\circ} \\mathrm{C}$ under $103 \\mathrm{MPa}$ for $3 \\mathrm{~h}$ [144], slightly reducing the yield strength and hardness. However, the dissolution of the $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ phase along the grain boundaries and reduction of pores, as depicted in Fig. 26 (b$\\mathrm{b}_{2}$ ), enhanced the total elongation without changing tensile strength.\n\nGhorbani et al. [146] investigated the dissolution of $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ at $45{ }^{\\circ} \\mathrm{C}$ based on the JMatPro plot of AZ61 Mg alloy. They reported that the $\\mathrm{Mg}_{17} \\mathrm{Al}_{12}$ phase completely dissolved at a temperature\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-23}\n\\end{center}\n\nFig. 26. Comparison of tensile strength of ( $\\left.a-a_{2}\\right)$ WAAM Mg alloy (b-b $\\left.b_{2}\\right)$ LPBF Mg alloy [145].\\\\\nhigher than $308^{\\circ} \\mathrm{C}$ which is identified by the binary phase diagram of $\\mathrm{Mg}-\\mathrm{Al}$, that exhibited $6 \\mathrm{wt} \\% \\mathrm{Al}$ at the temperature of $450{ }^{\\circ} \\mathrm{C}$ corresponds to single phase $\\alpha-\\mathrm{Mg}$, as can be seen in Fig. 27.\n\nIn summary, the HIP post-process treatment minimizes the internal defect of additively manufactured components. In the HIP treatment process, inert environments' high pressure and temperature allow materials to deform and collapse the pores. Still, if gas is soluble, it can diffuse out of the pores [147]. Therefore, the extended time high temperature is the cause for microstructure coarsening, which resulted in low mechanical properties and unfavourable microstructure.\n\n\\subsection*{4.5.2. Most influencing parameters of LPBF and WAAM}\nLPBF and WAAM have various parameters that can cause variations in microstructural, mechanical properties, chemical composition and dimensional accuracy of build components. Consideration of all the process parameters will be difficult; therefore, it is significant to recognize and concentrate on the most influencing parameters such as laser power, scanning speed, hatch distance, laser beam diameter and scan strategy in LPBF- AM and current, wire feed speed, travel speed, and inert gas flow rate in WAAM-AM process. One of the most significant ways to determine the most influencing parameters for the deposition of $\\mathrm{Mg}$ alloy is through the design of the experiment (DOF) [104]. For instance, Wei et al. [121] studied the effect of energy input on formability, microstructure and mechanical properties of LPBFed AZ91D Mg alloy. They reported that high laser power drastically reduced porosity. It also illustrates that reducing laser scanning speed at constant laser power produced porous components. Thus, laser power, scanning speed, and hatch distance should be considered while depositing Mg alloy. Similarly, in the WAAM process, Takagi et al. [67] deposited AZ31B Mg alloy using the GMAW-WAAM process and studied the effect of welding current and travel speed on deposited track quality. They reported smooth deposited tracks could not be achieved under welding current $60 \\mathrm{~A}$. This is because during deposition using a semiautomatic welding machine such as GMAW, the welding current determines the required length of feed wire.", "start_char_idx": 283592, "end_char_idx": 287577, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "bccfce7d-f6d4-4c66-bb3d-43b80b3f417e": {"__data__": {"id_": "bccfce7d-f6d4-4c66-bb3d-43b80b3f417e", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "7f3dcdeb-5ae5-4879-bf15-44176fe4c674", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "ecfe54304678c52e37d8368b60c98d50b9c226b340ebfb4a1cafc0f1a8f23c5c", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "3a7129e2-cc6f-47a4-bb3d-19ffad54801f", "node_type": "1", "metadata": {}, "hash": "b0b9e91bf96ff49910e13250943a29af570e7470e0cf631ddbfcd47e3d0269e8", "class_name": "RelatedNodeInfo"}}, "text": "For instance, Wei et al. [121] studied the effect of energy input on formability, microstructure and mechanical properties of LPBFed AZ91D Mg alloy. They reported that high laser power drastically reduced porosity. It also illustrates that reducing laser scanning speed at constant laser power produced porous components. Thus, laser power, scanning speed, and hatch distance should be considered while depositing Mg alloy. Similarly, in the WAAM process, Takagi et al. [67] deposited AZ31B Mg alloy using the GMAW-WAAM process and studied the effect of welding current and travel speed on deposited track quality. They reported smooth deposited tracks could not be achieved under welding current $60 \\mathrm{~A}$. This is because during deposition using a semiautomatic welding machine such as GMAW, the welding current determines the required length of feed wire. When the welding current decreased, the wire feed rate and the amount of wire supplied per unit length decreased. Therefore, under the current $60 \\mathrm{~A}$, the amount of wire supplied was insufficient; hence smooth deposited tracks could not be achieved. Moreover, at a travel speed of $1000 \\mathrm{~mm} / \\mathrm{min}$ humping defect occurs due to the travel speed exceeding a certain critical point. Hence, current, wire feed speed, travel speed, and inert gas flow rate must be carefully considered during the WAAM process to achieve superior deposited components. The most significant parameters that can affect the quality of various grades of $\\mathrm{Mg}$ alloy deposited by the WAAM and LPBF process are listed in Table 5.\n\n\\subsection*{4.6. Application}\nDemand for Mg and Mg alloys is rapidly increasing due to huge applications in aircraft, automotive, armaments, electronics, sports, construction and marine [149,150]. However, Mg and Mg alloys are extensively employed in biomedical applications owing to their appropriate mechanical properties and biocompatible and biodegradable nature [150,151]. The manufacturing of $\\mathrm{Mg}$ alloy is quite challenging. Therefore, additive manufacturing processes are used to manufacture biomaterials such as $\\mathrm{Mg}$ and its alloy [151-155]. The additively manufactured $\\mathrm{AZ}$ series of $\\mathrm{Mg}$ alloys are highly significant in components, including biomedical implants such as stents, cardiovascular stents, hip and knee joint implants and scaffolds [158-164].\n\nMoreover, it is remarkable that to support the stents and other implants devices while healing the bone, the Mg alloy can be utilized in orthopaedic fixation (i.g., bones pins, compressive plates and screws) because of the biodegradable and nontoxic nature of $\\mathrm{Mg}$, as can be seen in Fig. 28 [164,165]. Even though Mg is considered for non-bearing applications such as stents due to its low mechanical properties, however, some Mg alloys such as WE43 and AZ80M have the potentials to use for load-bearing applications due to their comparable strength to bone and lower elastic modulus compared to commercial available biomedical implants such as Ti-6Al-4V and SS316 steel [163-167]. From the literature survey of Mg alloy deposited using LPBF and WAAM processes, it is worth noting that both approaches are suitable for depositing $\\mathrm{Mg}$\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-24}\n\\end{center}\n\nFig. 27. (a) Phase identified using JMatPro (b) phase diagram of Mg-Al [146].\n\nTable 5\n\nMost influencing parameters for WAAM and LPBF deposition of Mg and its alloys.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-25}\n\\end{center}\n\nbiomaterials and biomedical implants; however, compared to the LPBF process, the WAAM process cannot be manufactured very complex magnesium components. But regarding the size of parts, the WAAM process is more suitable than LPBF. Therefore, both methods can produce excellent $\\mathrm{Mg}$ components specifically.\n\n\\section*{5. Summary and outlook}\nIn this review, the design aspect of different gas shielding, deposition, microstructure, mechanical properties, and corrosion behaviour of magnesium alloys fabricated using wire arc additive manufacturing (WAAM) and laser powder bed fusion (LPBF) have been critiqued and summarized.", "start_char_idx": 286712, "end_char_idx": 290986, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "3a7129e2-cc6f-47a4-bb3d-19ffad54801f": {"__data__": {"id_": "3a7129e2-cc6f-47a4-bb3d-19ffad54801f", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "bccfce7d-f6d4-4c66-bb3d-43b80b3f417e", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "95f7f893ed36ba208512cf8f768784bc04988870817f2246eaa5abc9f17b699f", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "02c215cf-4c0b-482d-a58e-f5a39f2e1333", "node_type": "1", "metadata": {}, "hash": "fe38920454630f32cf54675d4b95a008e184f033294b10222ebf08d453611ed9", "class_name": "RelatedNodeInfo"}}, "text": "Table 5\n\nMost influencing parameters for WAAM and LPBF deposition of Mg and its alloys.\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-25}\n\\end{center}\n\nbiomaterials and biomedical implants; however, compared to the LPBF process, the WAAM process cannot be manufactured very complex magnesium components. But regarding the size of parts, the WAAM process is more suitable than LPBF. Therefore, both methods can produce excellent $\\mathrm{Mg}$ components specifically.\n\n\\section*{5. Summary and outlook}\nIn this review, the design aspect of different gas shielding, deposition, microstructure, mechanical properties, and corrosion behaviour of magnesium alloys fabricated using wire arc additive manufacturing (WAAM) and laser powder bed fusion (LPBF) have been critiqued and summarized. The collected results revealed that WAAM and LPBF are widely used to deposit Mg alloy in additive manufacturing processes. The additive manufacturing process represents a sustainable process for the deposition of $\\mathrm{Mg}$ alloy because of high material utilization (especially in WAAM), relatively low production time and less manufacturing cost. In addition, some adverse effects such as oxidation, evaporation, tensile residual stress, distortion, porosity and crack formation are major challenges during the deposition of $\\mathrm{Mg}$ alloy using AM process. Therefore, these defects create a grey area for further studies to thoroughly understand the external responsible factors such as man, method, and materials. In this regard, the right strategies like skilled operator (Man), suitable process (technique) and right materials should be selected to eliminate unfavourable conditions, thereby obtaining high-performance, high-quality and reliable products. CMT + pulse-based WAAM with a roller system controls these defects. In CMT + Pulse-based WAAM, low heat input and pulse frequency are responsible for reducing residual stress and applied roller just after deposition of each layer, thereby decreasing pore and other internal defects. Consequently, it reduced the anisotropic behaviour of mechanical properties of deposited components. Similarly, in LPBF, balling effect, residual stress, unmelted powder and porosity are significant concerns; therefore, it is essential to control these defects to achieve a better quality of $\\mathrm{Mg}$ parts. Researchers use various techniques, such as optimizing process parameters before deposition and applying an additional set-up for heating and cooling the substrate to minimize residual stress. However, these techniques could not eliminate all the defects; hence, various post-processing techniques such as laser shock peening, shot peening, surface melting and ball-rollerdiamond burnishing were used to eliminate these defects and further enhancement of microstructural, mechanical and corrosion preperformance of deposited Mg alloys. Moreover, the WAAM process is economical and able to manufacture comparatively large\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_7e5fbe1213c12de51fd6g-26(2)}\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_7e5fbe1213c12de51fd6g-26}\\\\\n\\includegraphics[max width=\\textwidth, center]{2024_04_13_7e5fbe1213c12de51fd6g-26(1)}\n\nFig. 28. Mg alloy scaffolds, manufactured using LPBF process (a) extracted from Ref. [166] (b) extracted from Ref. [167] (c) extracted from Ref. [117] (d)) extracted from Ref. [168] (e) extracted from Ref. [169] (f)) extracted from Ref. [131] (g) biomedical components of Mg alloy and their application [158,159].\n\ncomponents; however, dimensional accuracy and highly complex shape deposition are quite challenging. In contrast to WAAM, LPBF processes are highly accurate and can deposit any shape of components. In addition, the one major challenge during the deposition of $\\mathrm{Mg}$ alloy is maintaining the inert gas environments owing to the volatile nature of Mg powder. Further, to advancements of WAAM and LPBF process, it must be integrated with computer technology, like decision science, machine learning and process modelling, to achieve high efficiency and real-time monitoring from different places. The machine learning and process modelling approaches can help to optimize the WAAMed and LPBF process and make a better understanding of the process at a low cost. The primary concerns in the AMed component are residual stress development which varies layer by layer.", "start_char_idx": 290159, "end_char_idx": 294624, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "02c215cf-4c0b-482d-a58e-f5a39f2e1333": {"__data__": {"id_": "02c215cf-4c0b-482d-a58e-f5a39f2e1333", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "3a7129e2-cc6f-47a4-bb3d-19ffad54801f", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "a7724a3b4655804edd403454500269ca7a57f080104244cb5c8e531b671c6fc1", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "5c0d43af-4ccb-4f69-b9dc-3a91946150bd", "node_type": "1", "metadata": {}, "hash": "7b6a3a4dceee7bac1eb2d68fa0487ba39e4a9017d4902c7f5206248827262681", "class_name": "RelatedNodeInfo"}}, "text": "[169] (f)) extracted from Ref. [131] (g) biomedical components of Mg alloy and their application [158,159].\n\ncomponents; however, dimensional accuracy and highly complex shape deposition are quite challenging. In contrast to WAAM, LPBF processes are highly accurate and can deposit any shape of components. In addition, the one major challenge during the deposition of $\\mathrm{Mg}$ alloy is maintaining the inert gas environments owing to the volatile nature of Mg powder. Further, to advancements of WAAM and LPBF process, it must be integrated with computer technology, like decision science, machine learning and process modelling, to achieve high efficiency and real-time monitoring from different places. The machine learning and process modelling approaches can help to optimize the WAAMed and LPBF process and make a better understanding of the process at a low cost. The primary concerns in the AMed component are residual stress development which varies layer by layer. Therefore, it is challenging, timeconsuming, and more expensive to measure each layer experimentally. However, using numerical modelling, these challenges can be addressed easily, consequently saving time and money. Current drawbacks associated with WAAM and LPBF of Mg alloy manufacturing do not seem unbridgeable. However, intensive research is required to realize the potential of WAAMed and LPBFed $\\mathrm{Mg}$ alloy in advanced applications such as satellite parts, aerospace and biomedical. Therefore, the future research scopes based on this review are (i) investigating the deposition quality of various additive manufactured Mg alloy numerically and experimentally to\n\n\\begin{center}\n\\includegraphics[max width=\\textwidth]{2024_04_13_7e5fbe1213c12de51fd6g-27}\n\\end{center}\n\nFig. 29. Future advancement in the deposition of $\\mathrm{Mg}$ alloy using laser and arc additive manufacturing process.\n\noptimize and understand the process parameters, (ii) studying the developments of residual stress during deposition, (iii) to investigate the effect of post-processing such as surface melting, shot peening, burnishing and shock peening on mechanical properties and corrosion performance of as-deposited Mg alloy (iv) to investigate the fatigue corrosion behaviour of as-deposited $\\mathrm{Mg}$ and post processed Mg alloy. Apart from these, Fig. 29 shows the objectives not being explored to date in the field of additive manufacturing of magnesium alloys.\n\n\\section*{Conflicts of interest}\nThe authors declare that there is no conflicts of interest.\n\n\\section*{Acknowledgment}\nThe Department of Science and Technology (DST), Government of India, Grant No SP/YO/2019/1287(G), financially supported this work.\n\n\\section*{References}\n[1] B. Davis, The application of magnesium alloys in aircraft interiors changing the rules, Magnes. Technol. 2015-Janua (2015) 5, \\href{https://doi.org/10.1002/}{https://doi.org/10.1002/} 9781119093428.ch2.\n\n[2] D.S. Kumar, C.T. Sasanka, K. Ravindra, K.N.S. Suman, Magnesium and its alloys in automotive applications - a review, Am. J. Mater. Sci. Technol. (2015), \\href{https://doi.org/10.7726/ajmst.2015.1002}{https://doi.org/10.7726/ajmst.2015.1002}.\n\n[3] U. Riaz, I. Shabib, W. Haider, The current trends of Mg alloys in biomedical applications-a review, J. Biomed. Mater. Res. Part B Appl. Biomater. 107 (6) (2019) 1970-1996, \\href{https://doi.org/10.1002/jbm.b.34290}{https://doi.org/10.1002/jbm.b.34290}.\n\n[4] G.G. Wang, J.P. Weiler, Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications, J. Magnesium Alloys (2022), \\href{https://doi.org/10.1016/j.jma.2022.10.001}{https://doi.org/10.1016/j.jma.2022.10.001}.", "start_char_idx": 293645, "end_char_idx": 297327, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "5c0d43af-4ccb-4f69-b9dc-3a91946150bd": {"__data__": {"id_": "5c0d43af-4ccb-4f69-b9dc-3a91946150bd", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "02c215cf-4c0b-482d-a58e-f5a39f2e1333", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "9e0fb36296b43904d8142863b5138d070890ca8e6e0801433e3b7650b954dd39", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "36b388dd-8dc7-4eb1-987e-0f381ed51893", "node_type": "1", "metadata": {}, "hash": "7635de3671be2b05bb111903848ed5511804f68726ab1bcfae7bdfa7335031eb", "class_name": "RelatedNodeInfo"}}, "text": "[3] U. Riaz, I. Shabib, W. Haider, The current trends of Mg alloys in biomedical applications-a review, J. Biomed. Mater. Res. Part B Appl. Biomater. 107 (6) (2019) 1970-1996, \\href{https://doi.org/10.1002/jbm.b.34290}{https://doi.org/10.1002/jbm.b.34290}.\n\n[4] G.G. Wang, J.P. Weiler, Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications, J. Magnesium Alloys (2022), \\href{https://doi.org/10.1016/j.jma.2022.10.001}{https://doi.org/10.1016/j.jma.2022.10.001}.\n\n[5] T. Xu, Y. Yang, X. Peng, J. Song, F. Pan, Overview of advancement and development trend on magnesium alloy, J. Magnesium Alloys 7 (3) (2019) 536-544, \\href{https://doi.org/10.1016/j.jma.2019.08.001}{https://doi.org/10.1016/j.jma.2019.08.001}.\n\n[6] F. Froes, R. Boyer, B. Dutta, Introduction to aerospace materials requirements and the role of additive manufacturing, Addit. Manuf. Aerosp. Ind. (2019) 1-6, \\href{https://doi.org/10.1016/B978-0-12-814062-8.00001-7}{https://doi.org/10.1016/B978-0-12-814062-8.00001-7}.\n\n[7] M. Fletcher, A closer look at wire arc additive manufacturing (WAAM), Fabr, Met. Form (2020) [Online]. Available: \\href{https://www.fabricatingandmetalworking}{https://www.fabricatingandmetalworking}. com/2020/05/more-manufacturers-take-a-closer-look-at-wire-arc-additivemanufacturing-waam/.\\\\\n[8] J. Hirsch, T. Al-Samman, Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications, Acta Mater. 61 (3) (2013) 818-843, \\href{https://doi.org/10.1016/j.actamat.2012.10.044}{https://doi.org/10.1016/j.actamat.2012.10.044}.\n\n[9] Ian Polmear, Wrought magnesium alloys, Light Alloy. from Tradit. Alloy. to nanocrystals (2006) 237-296.\n\n[10] T. Debroy, et al., Additive manufacturing of metallic components - process, structure and properties, Prog. Mater. Sci. 92 (2018) 112-224.\n\n[11] R. Khandelwal, Additive Manufacturing in the Automotive Industry, Int. Res. J. Eng. Technol. (2008) [Online]. Available: \\href{http://www.irjet.net}{www.irjet.net}.\n\n[12] B. Blakey-Milner, et al., Metal additive manufacturing in aerospace: a review, Mater. Des. 209 (2021), \\href{https://doi.org/10.1016/j.matdes.2021.110008}{https://doi.org/10.1016/j.matdes.2021.110008}.\n\n[13] L. Gaget, 3D Printing for Construction, Sculpteo, 2018 [Online]. Available: \\href{https://www.sculpteo.com}{https://www.sculpteo.com}.\n\n[14] Conmet, Additive manufacturing in medical field, Trumpf Mag. (2018) [Online]. Available: \\href{https://www.trumpf.com/en_US/press/online-magazine/3dprinted-medical-implants-for-half-the-world/}{https://www.trumpf.com/en\\_US/press/online-magazine/3dprinted-medical-implants-for-half-the-world/}.\n\n[15] C.K. Chua, W.Y. Yeong, H.Y. Low, T. Tran, H.W.", "start_char_idx": 296818, "end_char_idx": 299556, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "36b388dd-8dc7-4eb1-987e-0f381ed51893": {"__data__": {"id_": "36b388dd-8dc7-4eb1-987e-0f381ed51893", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "5c0d43af-4ccb-4f69-b9dc-3a91946150bd", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "fbe0fc2e0c9c90b4f9de374c883e269349a7c5238bf76121a3e14db6cc89669b", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "287e9b97-5f5b-4e22-8b6d-135537422451", "node_type": "1", "metadata": {}, "hash": "11df251130dcc7728d942b900dd4421a129605e046492c8de0cb14b0d57d04c9", "class_name": "RelatedNodeInfo"}}, "text": "[13] L. Gaget, 3D Printing for Construction, Sculpteo, 2018 [Online]. Available: \\href{https://www.sculpteo.com}{https://www.sculpteo.com}.\n\n[14] Conmet, Additive manufacturing in medical field, Trumpf Mag. (2018) [Online]. Available: \\href{https://www.trumpf.com/en_US/press/online-magazine/3dprinted-medical-implants-for-half-the-world/}{https://www.trumpf.com/en\\_US/press/online-magazine/3dprinted-medical-implants-for-half-the-world/}.\n\n[15] C.K. Chua, W.Y. Yeong, H.Y. Low, T. Tran, H.W. Tan, 3D printing and additive manufacturing of electronics, 3D Print. Addit. Manuf. Electron. (2021), \\href{https://doi.org/10.1142/11773}{https://doi.org/10.1142/11773}.\n\n[16] B. Schulz, Wire arc additive manufacturing delivers low buy-to-fly ratios, Addit. Manuf. (2012) [Online]. Available: \\href{https://www.additivemanufacturing.media/}{https://www.additivemanufacturing.media/} articles/wire-arc-additive-manufacturing-delivers-low-buy-to-fly-ratios.\n\n[17] M. Esmaily, et al., A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting, Addit. Manuf. 35 (2020), \\href{https://doi.org/10.1016/j.addma.2020.101321}{https://doi.org/10.1016/j.addma.2020.101321}.\n\n[18] T. DebRoy, et al., Additive manufacturing of metallic components - process, structure and properties, Prog. Mater. Sci. 92 (2018) 112-224, https:// \\href{http://doi.org/10.1016/j.pmatsci.2017.10.001}{doi.org/10.1016/j.pmatsci.2017.10.001}.\n\n[19] Z. Zeng, M. Salehi, A. Kopp, S. Xu, M. Esmaily, N. Birbilis, Recent progress and perspectives in additive manufacturing of magnesium alloys, J. Magnesium Alloys (2022), \\href{https://doi.org/10.1016/j.jma.2022.03.001}{https://doi.org/10.1016/j.jma.2022.03.001}.\n\n[20] S. Liu, H. Guo, A review of SLMed magnesium alloys: processing, properties, alloying elements and postprocessing, Metals 10 (8) (2020) 1-48, https:// \\href{http://doi.org/10.3390/met10081073}{doi.org/10.3390/met10081073}.\n\n[21] L. Zhang, P. Michaleris, Investigation of Lagrangian and Eulerian finite element methods for modeling the laser forming process, Finite Elem. Anal. Des. 40 (4) (2004) 383-405, \\href{https://doi.org/10.1016/S0168-874X(03)00069-6}{https://doi.org/10.1016/S0168-874X(03)00069-6}.\n\n[22] R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru, M.P. Sealy, Additive manufacturing of magnesium alloys, Bioact. Mater. 5 (1) (2020) 44-54, \\href{https://doi.org/10.1016/j.bioactmat.2019.12.004}{https://doi.org/10.1016/j.bioactmat.2019.12.004}.\n\n[23] K.S. Derekar, A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium, Mater. Sci. Technol. 34 (8) (2018) 895-916, \\href{https://doi.org/10.1080/02670836.2018.1455012}{https://doi.org/10.1080/02670836.2018.1455012}.", "start_char_idx": 299063, "end_char_idx": 301825, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "287e9b97-5f5b-4e22-8b6d-135537422451": {"__data__": {"id_": "287e9b97-5f5b-4e22-8b6d-135537422451", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "36b388dd-8dc7-4eb1-987e-0f381ed51893", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "b7d3bfa4de1194104ecd2d5dad844400e7fd2d0a285127346c6224acc76a1da0", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "d15af1bf-9056-4b90-ba72-c5129226d4eb", "node_type": "1", "metadata": {}, "hash": "184b80c2fec17b1d7f33f007bf53bd69e172ff4ddb0a38f404f9c3bc0987ce5a", "class_name": "RelatedNodeInfo"}}, "text": "Sealy, Additive manufacturing of magnesium alloys, Bioact. Mater. 5 (1) (2020) 44-54, \\href{https://doi.org/10.1016/j.bioactmat.2019.12.004}{https://doi.org/10.1016/j.bioactmat.2019.12.004}.\n\n[23] K.S. Derekar, A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium, Mater. Sci. Technol. 34 (8) (2018) 895-916, \\href{https://doi.org/10.1080/02670836.2018.1455012}{https://doi.org/10.1080/02670836.2018.1455012}.\n\n[24] B. Wu, et al., A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement, J. Manuf. Process. 35 (2018) 127-139, \\href{https://doi.org/10.1016/j.jmapro.2018.08.001}{https://doi.org/10.1016/j.jmapro.2018.08.001}.\n\n[25] Y. Chen, Z. Xu, C. Smith, J. Sankar, Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomater. 10 (11) (2014) 4561-4573, \\href{https://doi.org/10.1016/j.actbio.2014.07.005}{https://doi.org/10.1016/j.actbio.2014.07.005}.\n\n[26] M.K. R Imran, A Al Rashid, N. Sezer, Additive manufacturing of biodegradable magnesium scaffolds (ICAME 2021, 6th Int. Conf. Adv. Mech. Eng. (2021) [Online]. Available: \\href{https://scholar.google.com.pk/citations?hl=en&}{https://scholar.google.com.pk/citations?hl=en\\&} user=VBOYTIEAAAAJ.\n\n[27] R. Baker, Method of making decorative articles, ACM SIGGRAPH Comput. Graph. 28 (2) (1925) 131-134.\n\n[28] M. Gzyl, A. Rosochowski, R. Pesci, L. Olejnik, E. Yakushina, P. Wood, Mechanical properties and microstructure of az31b magnesium alloy processed by I-ECAP, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (3) (2014) 1609-1620, \\href{https://doi.org/10.1007/s11661-013-2094-z}{https://doi.org/10.1007/s11661-013-2094-z}.\n\n[29] L. Song, Y. Lu, Y. Zhang, X. Li, M. Cong, W. Xu, The effect of Ca addition on microstructure and mechanical properties of extruded AZ31 alloys, Vacuum 168 (2019), \\href{https://doi.org/10.1016/j.vacuum.2019.108822}{https://doi.org/10.1016/j.vacuum.2019.108822}.\n\n[30] R. Motallebi, Z. Savaedi, H. Mirzadeh, Post-processing heat treatment of lightweight magnesium alloys fabricated by additive manufacturing: a review, J. Mater. Res. Technol. 20 (2022) 1873-1892, \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.jmrt.2022.07.154.\n\n[31] M.P. Mughal, H. Fawad, R.A. Mufti, Three-dimensional finite-element modelling of deformation in weld-based rapid prototyping, Proc. Inst Mech. Eng. Part C J. Mech. Eng. Sci. 220 (6) (2006) 875-885, \\href{https://doi.org/}{https://doi.org/} 10.1243/09544062JMES164.", "start_char_idx": 301364, "end_char_idx": 303912, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "d15af1bf-9056-4b90-ba72-c5129226d4eb": {"__data__": {"id_": "d15af1bf-9056-4b90-ba72-c5129226d4eb", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "287e9b97-5f5b-4e22-8b6d-135537422451", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "d72993581ce87a0efc2a97b770c6d64e0247a1ef4ca1f364f022eabca40c505a", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "11d831ea-8cfc-4797-bfe3-7f3f4ed84c7e", "node_type": "1", "metadata": {}, "hash": "b7a50f4b48ad65b7565d55c7cafebbaa18697a5af5513935af143ceb36ae8d0f", "class_name": "RelatedNodeInfo"}}, "text": "Res. Technol. 20 (2022) 1873-1892, \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.jmrt.2022.07.154.\n\n[31] M.P. Mughal, H. Fawad, R.A. Mufti, Three-dimensional finite-element modelling of deformation in weld-based rapid prototyping, Proc. Inst Mech. Eng. Part C J. Mech. Eng. Sci. 220 (6) (2006) 875-885, \\href{https://doi.org/}{https://doi.org/} 10.1243/09544062JMES164.\n\n[32] J. Guo, Y. Zhou, C. Liu, Q. Wu, X. Chen, J. Lu, Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency, Materials 9 (no. 10) (2016), \\href{https://doi.org/10.3390/ma9100823}{https://doi.org/10.3390/ma9100823}.\n\n[33] C. Zhang, Y. Li, M. Gao, X. Zeng, Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source, Mater Sci. Eng., A 711 (2018) 415-423, \\href{https://doi.org/10.1016/j.msea.2017.11.084}{https://doi.org/10.1016/j.msea.2017.11.084}.\n\n[34] V. Dhinakaran, J. Ajith, A. Fathima Yasin Fahmidha, T. Jagadeesha, T. Sathish, B. Stalin, Wire Arc Additive Manufacturing (WAAM) process of nickel based superalloys-A review, Mater. Today Proc. 21 (2020) 920-925, https:// \\href{http://doi.org/10.1016/j.matpr.2019.08.159}{doi.org/10.1016/j.matpr.2019.08.159}.\n\n[35] D. Ding, Z. Pan, D. Cuiuri, H. Li, Wire-feed additive manufacturing of metal components: technologies, developments and future interests, Int. J. Adv. Manuf. Technol. 81 (1-4) (2015) 465-481, \\href{https://doi.org/10.1007/s00170015-7077-3}{https://doi.org/10.1007/s00170015-7077-3}.\n\n[36] N.E. Imoudu, Y.Z. Ayele, A. Barabadi, The characteristic of cold metal transfer (CMT) and its application for cladding, IEEE Int. Conf. Ind. Eng. Eng. Manag. 2017 (2018) 1883-1887, \\href{https://doi.org/10.1109/IEEM.2017.8290218}{https://doi.org/10.1109/IEEM.2017.8290218}. Decem.\n\n[37] W. Aiyiti, W. Zhao, B. Lu, Y. Tang, Investigation of the overlapping parameters of MPAW-based rapid prototyping, Rapid Prototyp. J. 12 (3) (2006) 165-172, \\href{https://doi.org/10.1108/13552540610670744}{https://doi.org/10.1108/13552540610670744}.\n\n[38] J. Xiong, G. Zhang, J. Hu, L. Wu, Bead geometry prediction for robotic GMAWbased rapid manufacturing through a neural network and a second-order regression analysis, J. Intell. Manuf. 25 (1) (2014) 157-163, \\href{https://doi.org/}{https://doi.org/} 10.1007/s10845-012-0682-1.\n\n[39] J. Xiong, G. Zhang, H. Gao, L. Wu, Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing, Robot. Comput. Integrated Manuf.", "start_char_idx": 303529, "end_char_idx": 306093, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "11d831ea-8cfc-4797-bfe3-7f3f4ed84c7e": {"__data__": {"id_": "11d831ea-8cfc-4797-bfe3-7f3f4ed84c7e", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "d15af1bf-9056-4b90-ba72-c5129226d4eb", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "cbb621abc986e82db09965bb95d288c8cdf01a85026c6577d4f5a75e0c7f2191", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "0a9995be-0ddc-416b-9201-0ce33e7fe993", "node_type": "1", "metadata": {}, "hash": "2efa5614147ea57431a4dc7433471d665a9bb49c16d7c2f3ce0d3fe912e12a69", "class_name": "RelatedNodeInfo"}}, "text": "[38] J. Xiong, G. Zhang, J. Hu, L. Wu, Bead geometry prediction for robotic GMAWbased rapid manufacturing through a neural network and a second-order regression analysis, J. Intell. Manuf. 25 (1) (2014) 157-163, \\href{https://doi.org/}{https://doi.org/} 10.1007/s10845-012-0682-1.\n\n[39] J. Xiong, G. Zhang, H. Gao, L. Wu, Modeling of bead section profile and overlapping beads with experimental validation for robotic GMAW-based rapid manufacturing, Robot. Comput. Integrated Manuf. 29 (2) (2013) 417-423, \\href{https://doi.org/10.1016/j.rcim.2012.09.011}{https://doi.org/10.1016/j.rcim.2012.09.011}.\n\n[40] S. Suryakumar, K.P. Karunakaran, A. Bernard, U. Chandrasekhar, N. Raghavender, D. Sharma, Weld bead modeling and process optimization in Hybrid Layered Manufacturing, CAD Comput. Aided Des. 43 (4) (2011) 331-344, \\href{https://doi.org/10.1016/j.cad.2011.01.006}{https://doi.org/10.1016/j.cad.2011.01.006}.\n\n[41] V.T. Rajan, V. Srinivasan, K.A. Tarabanis, The optimal zigzag direction for filling a two-dimensional region, Rapid Prototyp. J. 7 (5) (2001) 231-241, \\href{https://doi.org/10.1108/13552540110410431}{https://doi.org/10.1108/13552540110410431}.\n\n[42] A. Marsan, P. Kulkarni, D. Dutta, A review of process planning techniques in layered manufacturing, Rapid Prototyp. J. 6 (1) (2006) 18-35.\n\n[43] Z. Lin, K. Song, X. Yu, A review on wire and arc additive manufacturing of titanium alloy, J. Manuf. Process. 70 (2021) 24-45, \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.jmapro.2021.08.018.\n\n[44] A. Schierl, The CMT - process - A Revolution in welding technology, Weld. World 49 (9) (2005) 38. SPEC. ISS.\n\n[45] T. Hauser, et al., Oxidation in wire arc additive manufacturing of aluminium alloys, Addit. Manuf. 41 (2021), \\href{https://doi.org/10.1016/j.addma.2021.101958}{https://doi.org/10.1016/j.addma.2021.101958}.\n\n[46] N.R. Mandal, Welding Defects, 2017, pp. 283-292, \\href{https://doi.org/10.1007/}{https://doi.org/10.1007/} 978-981-10-2955-4\\_19.\n\n[47] I. do V. Tomaz, F.H.G. Cola\u00e7o, S. Sarfraz, D.Y. Pimenov, M.K. Gupta, G. Pintaude, Investigations on quality characteristics in gas tungsten arc welding process using artificial neural network integrated with genetic algorithm, Int. J. Adv. Manuf. Technol. 113 (11-12) (2021) 3569-3583, https:// \\href{http://doi.org/10.1007/s00170-021-06846-5}{doi.org/10.1007/s00170-021-06846-5}.\n\n[48] R.S. Bharathi, N.S. Shanmugam, R.M. Kannan, S.A. Vendan, Studies on the parametric effects of plasma arc welding of 2205 duplex stainless steel, High Temp. Mater. Process.", "start_char_idx": 305611, "end_char_idx": 308160, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "0a9995be-0ddc-416b-9201-0ce33e7fe993": {"__data__": {"id_": "0a9995be-0ddc-416b-9201-0ce33e7fe993", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "11d831ea-8cfc-4797-bfe3-7f3f4ed84c7e", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "38a413fa28f75f7291d29ca4c2e034eef5923a760f50e7cf4bf1bd2a5d255b0c", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "857184c9-a2f2-4a94-9406-3d21bb995e36", "node_type": "1", "metadata": {}, "hash": "fb971c85f2dcf5813a2a95ef6b24560eb5a53f7e870af2ee9be57880b4018f89", "class_name": "RelatedNodeInfo"}}, "text": "Cola\u00e7o, S. Sarfraz, D.Y. Pimenov, M.K. Gupta, G. Pintaude, Investigations on quality characteristics in gas tungsten arc welding process using artificial neural network integrated with genetic algorithm, Int. J. Adv. Manuf. Technol. 113 (11-12) (2021) 3569-3583, https:// \\href{http://doi.org/10.1007/s00170-021-06846-5}{doi.org/10.1007/s00170-021-06846-5}.\n\n[48] R.S. Bharathi, N.S. Shanmugam, R.M. Kannan, S.A. Vendan, Studies on the parametric effects of plasma arc welding of 2205 duplex stainless steel, High Temp. Mater. Process. 37 (3) (2018) 219-232, \\href{https://doi.org/10.1515/htmp2016-0087}{https://doi.org/10.1515/htmp2016-0087}.\n\n[49] Y. Liang, S. Hu, J. Shen, H. Zhang, P. Wang, Geometrical and microstructural characteristics of the TIG-CMT hybrid welding in 6061 aluminum alloy cladding, J. Mater. Process. Technol. 239 (2017) 18-30, \\href{https://doi.org/}{https://doi.org/} 10.1016/j.jmatprotec.2016.08.005.\n\n[50] S. Hu, H. Zhang, Z. Wang, Y. Liang, Y. Liu, The arc characteristics of cold metal transfer welding with AZ31 magnesium alloy wire, J. Manuf. Process. 24 (2016) 298-306, \\href{https://doi.org/10.1016/j.jmapro.2016.10.001}{https://doi.org/10.1016/j.jmapro.2016.10.001}.\n\n[51] J.D. Kim, J.W. Kim, J.Y. Cheon, Y. Do Kim, C. Ji, Effect of shielding gases on the wire arc additive manufacturability of $5 \\mathrm{Cr}-4 \\mathrm{Mo}$ tool steel for die casting mold making, J. Korean Inst. Met. Mater. 58 (12) (2020) 852-862, https:// \\href{http://doi.org/10.3365/KJMM.2020.58.12.852}{doi.org/10.3365/KJMM.2020.58.12.852}.\n\n[52] C. Li, K. Muneharua, S. Takao, H. Kouji, Fiber laser-GMA hybrid welding of commercially pure titanium, Mater. Des. 30 (1) (2009) 109-114, https:// \\href{http://doi.org/10.1016/j.matdes.2008.04.043}{doi.org/10.1016/j.matdes.2008.04.043}.\n\n[53] R. Bendikiene, S. Baskutis, J. Baskutiene, A. Ciuplys, T. Kacinskas, Comparative study of TIG welded commercially pure titanium, J. Manuf. Process. 36 (2018) 155-163, \\href{https://doi.org/10.1016/j.jmapro.2018.10.007}{https://doi.org/10.1016/j.jmapro.2018.10.007}.\n\n[54] F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, F. Wang, Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti6Al-4V, J. Mater. Process. Technol. 212 (6) (2012) 1377-1386, https:// \\href{http://doi.org/10.1016/j.jmatprotec.2012.02.002}{doi.org/10.1016/j.jmatprotec.2012.02.002}.\n\n[55] M. Dreher, U. F\u00fcssel, S. Rose, M. H\u00e4\u00dfler, M. Hertel, M. Schnick, Methods and results concerning the shielding gas flow in GMAW, Weld.", "start_char_idx": 307625, "end_char_idx": 310155, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "857184c9-a2f2-4a94-9406-3d21bb995e36": {"__data__": {"id_": "857184c9-a2f2-4a94-9406-3d21bb995e36", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "0a9995be-0ddc-416b-9201-0ce33e7fe993", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "264e2861b1dc3f0044e62cb465cfcae86adbeb6d898c93126b2e0a1652c428fa", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "08ad9555-da95-4b6a-be87-1bde785a4511", "node_type": "1", "metadata": {}, "hash": "59b3f1bfb877d634aee3961427fff9a8291f47a9d716ffe0898c1727793b2795", "class_name": "RelatedNodeInfo"}}, "text": "[54] F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, F. Wang, Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti6Al-4V, J. Mater. Process. Technol. 212 (6) (2012) 1377-1386, https:// \\href{http://doi.org/10.1016/j.jmatprotec.2012.02.002}{doi.org/10.1016/j.jmatprotec.2012.02.002}.\n\n[55] M. Dreher, U. F\u00fcssel, S. Rose, M. H\u00e4\u00dfler, M. Hertel, M. Schnick, Methods and results concerning the shielding gas flow in GMAW, Weld. World 57 (3) (2013) 391-410, \\href{https://doi.org/10.1007/s40194-013-0038-2}{https://doi.org/10.1007/s40194-013-0038-2}.\n\n[56] T. L. (Head Office), Metal Inert Gas (Mig) Welding - Process and Applications, TWI Ltd (Head Off., 2021.\n\n[57] S. Gneiger, J.A. \u00d6sterreicher, A.R. Arnoldt, A. Birgmann, M. Fehlbier, Development of a high strength magnesium alloy for wire arc additive manufacturing, Metals 10 (6) (2020) 1-14, \\href{https://doi.org/10.3390/}{https://doi.org/10.3390/} met10060778.\n\n[58] Q. Cao, et al., Achieving equiaxed microstructure and isotropic mechanical properties of additively manufactured AZ31 magnesium alloy via ultrasonic frequency pulsed arc, J. Alloys Compd. 909 (2022), \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.jallcom.2022.164742.\n\n[59] X. Fang, et al., Additive manufacturing of high performance AZ31 magnesium alloy with full equiaxed grains: microstructure, mechanical property, and electromechanical corrosion performance, J. Mater. Process. Technol. 300 (2022), \\href{https://doi.org/10.1016/j.jmatprotec.2021}{https://doi.org/10.1016/j.jmatprotec.2021}. 117430.\n\n[60] Z. Zhang, et al., Effect of solution annealing on microstructures and corrosion behavior of wire and arc additive manufactured AZ91 magnesium alloy in sodium chloride solution, J. Mater. Res. Technol. 18 (2022) 416-427, https:// \\href{http://doi.org/10.1016/j.jmrt.2022.02.092}{doi.org/10.1016/j.jmrt.2022.02.092}.\\\\\n[61] Y. Guo, G. Quan, Y. Jiang, L. Ren, L. Fan, H. Pan, Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding, J. Magnesium Alloys 9 (1) (2021) 192-201, \\href{https://doi.org/10.1016/j.jma.2020.01.003}{https://doi.org/10.1016/j.jma.2020.01.003}.\n\n[62] X. Yang, et al., Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process, Mater. Sci. Eng., A 774 (2020), \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.msea.2020.138942.\n\n[63] P. Wang, H. Zhang, H. Zhu, Q. Li, M. Feng, Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: processing, microstructure, and mechanical behavior, J. Mater. Process. Technol. 288 (2021), \\href{https://doi.org/10.1016/j.jmatprotec.2020.116895}{https://doi.org/10.1016/j.jmatprotec.2020.116895}.", "start_char_idx": 309690, "end_char_idx": 312559, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "08ad9555-da95-4b6a-be87-1bde785a4511": {"__data__": {"id_": "08ad9555-da95-4b6a-be87-1bde785a4511", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "857184c9-a2f2-4a94-9406-3d21bb995e36", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "2ba9edfd942b930373e49e4bd818a8b216e0ed04bcc7e2b5623b206787d54631", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "e6763634-8a64-46e9-ace5-95492d7011b7", "node_type": "1", "metadata": {}, "hash": "2c41911c7a124ca6cacf6e653c7383e288ad22f9ec88e758a7fe04ed681e5ff8", "class_name": "RelatedNodeInfo"}}, "text": "[62] X. Yang, et al., Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process, Mater. Sci. Eng., A 774 (2020), \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.msea.2020.138942.\n\n[63] P. Wang, H. Zhang, H. Zhu, Q. Li, M. Feng, Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: processing, microstructure, and mechanical behavior, J. Mater. Process. Technol. 288 (2021), \\href{https://doi.org/10.1016/j.jmatprotec.2020.116895}{https://doi.org/10.1016/j.jmatprotec.2020.116895}.\n\n[64] T. Klein, A. Arnoldt, M. Schnall, S. Gneiger, Microstructure Formation and mechanical properties of a wire-Arc Additive manufactured magnesium alloy, Jom 73 (4) (2021) 1126-1134, \\href{https://doi.org/10.1007/s11837-02104567-4}{https://doi.org/10.1007/s11837-02104567-4}.\n\n[65] Y. Guo, et al., Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing, J. Magnesium Alloys (2021), \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.jma.2021.04.006.\n\n[66] J. Bi, J. Shen, S. Hu, Y. Zhen, F. Yin, X. Bu, Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing, Mater. Lett. 276 (2020), \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.matlet.2020.128185.\n\n[67] H. Takagi, et al., Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing, Addit. Manuf. 24 (2018) 498-507, \\href{https://doi.org/10.1016/j.addma.2018.10.026}{https://doi.org/10.1016/j.addma.2018.10.026}.\n\n[68] D.A. Martinez Holguin, S. Han, N.P. Kim, Magnesium alloy 3D printing by wire and Arc Additive manufacturing (WAAM), MRS Adv 3 (49) (2018) 2959-2964, \\href{https://doi.org/10.1557/adv.2018.553}{https://doi.org/10.1557/adv.2018.553}.\n\n[69] J. Li, et al., Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in $\\mathrm{NaCl}$ solution, J. Magnesium Alloys (2021), \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.jma.2021.04.007.\n\n[70] Y. Guo, H. Pan, L. Ren, G. Quan, Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy, Mater. Lett. 247 (2019) 4-6, \\href{https://doi.org/10.1016/j.matlet.2019.03.063}{https://doi.org/10.1016/j.matlet.2019.03.063}.\n\n[71] M. Razavi, Y. Huang, Assessment of magnesium-based biomaterials: from bench to clinic, Biomater. Sci. 7 (6) (2019) 2241-2263, \\href{https://doi.org/}{https://doi.org/} 10.1039/c9bm00289h.\n\n[72] P.C. Priarone, A.R.", "start_char_idx": 311941, "end_char_idx": 314657, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "e6763634-8a64-46e9-ace5-95492d7011b7": {"__data__": {"id_": "e6763634-8a64-46e9-ace5-95492d7011b7", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "08ad9555-da95-4b6a-be87-1bde785a4511", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "20b1ad2f283b20a13300ec2cd05079efda5e68da15af8d6a5019a6cb5e81a461", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "94997eed-961e-4cbd-a868-f7894373023c", "node_type": "1", "metadata": {}, "hash": "a5572ff60302bf8d02a0ebfeb54d5581ea5ebb25a36385331266250aaca4f295", "class_name": "RelatedNodeInfo"}}, "text": "[70] Y. Guo, H. Pan, L. Ren, G. Quan, Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy, Mater. Lett. 247 (2019) 4-6, \\href{https://doi.org/10.1016/j.matlet.2019.03.063}{https://doi.org/10.1016/j.matlet.2019.03.063}.\n\n[71] M. Razavi, Y. Huang, Assessment of magnesium-based biomaterials: from bench to clinic, Biomater. Sci. 7 (6) (2019) 2241-2263, \\href{https://doi.org/}{https://doi.org/} 10.1039/c9bm00289h.\n\n[72] P.C. Priarone, A.R. Catalano, A. Simeone, L. Settineri, Effects of deposition parameters on cumulative energy demand for Cold Metal Transfer additive manufacturing processes, CIRP Ann 71 (1) (2022) 17-20, \\href{https://doi.org/}{https://doi.org/} 10.1016/j.cirp.2022.03.022.\n\n[73] V. Subravel, G. Padmanaban, V. Balasubramanian, Effect of pulse frequency on tensile properties and microstructural characteristics of gas tungsten arc welded AZ31B magnesium alloy, Trans. Indian Inst. Met. 68 (3) (2015) 353-362, \\href{https://doi.org/10.1007/s12666-014-0469-5}{https://doi.org/10.1007/s12666-014-0469-5}.\n\n[74] F. Wang, S. Williams, M. Rush, Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy, Int. J. Adv. Manuf. Technol. 57 (5-8) (2011) 597-603, \\href{https://doi.org/}{https://doi.org/} 10.1007/s00170-011-3299-1.\n\n[75] S. Zhang, et al., Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomater. 6 (2) (2010) 626-640, \\href{https://doi.org/10.1016/j.actbio.2009.06.028}{https://doi.org/10.1016/j.actbio.2009.06.028}.\n\n[76] A.F. Lotfabadi, H.R. Bakhsheshi-Rad, M.H. Idris, E. Hamzah, M. Kasiri-Asgarani, The role of solution heat treatment on corrosion and mechanical behaviour of Mg-Zn biodegradable alloys, Can. Metall. Q. 55 (1) (2016) 53-64, \\href{https://doi.org/10.1179/1879139515Y.0000000031}{https://doi.org/10.1179/1879139515Y.0000000031}.\n\n[77] M.N. Gussev, K.G. Field, J.T. Busby, Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels, J. Nucl. Mater. 460 (2015) 139-152, \\href{https://doi.org/10.1016/j.jnucmat.2015.02.008}{https://doi.org/10.1016/j.jnucmat.2015.02.008}.\n\n[78] H. Somekawa, A. Singh, T. Inoue, Enhancement of toughness by grain boundary control in magnesium binary alloys, Mater. Sci. Eng., A 612 (2014) 172-178, \\href{https://doi.org/10.1016/j.msea.2014.06.001}{https://doi.org/10.1016/j.msea.2014.06.001}.\n\n[79] S. Han, M. Zielewski, D.M. Holguin, M.M. Parra, N. Kim, Optimization of AZ91D process and corrosion resistance using wire arc Additive Manufacturing, Appl. Sci.", "start_char_idx": 314172, "end_char_idx": 316774, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "94997eed-961e-4cbd-a868-f7894373023c": {"__data__": {"id_": "94997eed-961e-4cbd-a868-f7894373023c", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "e6763634-8a64-46e9-ace5-95492d7011b7", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "87394405b4f07e226b04f20446c52887d739518a7916885c277df348a6967bbb", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "4fa54071-d6ef-40da-b945-053e190aa5cf", "node_type": "1", "metadata": {}, "hash": "033d11c9cb359eee8c709c971b4e431cc1541905aced9f135635a95ca47ec4b5", "class_name": "RelatedNodeInfo"}}, "text": "[78] H. Somekawa, A. Singh, T. Inoue, Enhancement of toughness by grain boundary control in magnesium binary alloys, Mater. Sci. Eng., A 612 (2014) 172-178, \\href{https://doi.org/10.1016/j.msea.2014.06.001}{https://doi.org/10.1016/j.msea.2014.06.001}.\n\n[79] S. Han, M. Zielewski, D.M. Holguin, M.M. Parra, N. Kim, Optimization of AZ91D process and corrosion resistance using wire arc Additive Manufacturing, Appl. Sci. 8 (8) (2018), \\href{https://doi.org/10.3390/app8081306}{https://doi.org/10.3390/app8081306}.\n\n[80] G. Roncallo, G. Cacciamani, E. Vacchieri, M. Ilatovskaia, I. Saenko, O. Fabrichnaya, Thermodynamic modeling and experimental investigation of the MgO-Y2O3-ZrO2 system, J. Am. Ceram. Soc. 103 (9) (2020) 5337-5353, \\href{https://doi.org/10.1111/jace.17224}{https://doi.org/10.1111/jace.17224}.\n\n[81] M. Yang, F. Pan, R. Cheng, A. Tang, Comparation about efficiency of Al-10Sr and Mg-10Sr master alloys to grain refinement of AZ31 magnesium alloy, J. Mater. Sci. 42 (24) (2007) 10074-10079, \\href{https://doi.org/10.1007/s10853007-2035-6}{https://doi.org/10.1007/s10853007-2035-6}.\n\n[82] A. Pawlak, P.E. Szymczyk, T. Kurzynowski, E. Chlebus, Selective laser melting of magnesium AZ31B alloy powder, Rapid Prototyp. J. 26 (2) (2020) 249-258, \\href{https://doi.org/10.1108/RPJ-05-2019-0137}{https://doi.org/10.1108/RPJ-05-2019-0137}.\n\n[83] Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnesium Alloys 9 (3) (2021) 705-747, \\href{https://doi.org/10.1016/j.jma.2021.04.001}{https://doi.org/10.1016/j.jma.2021.04.001}.\n\n[84] Z. Lin, C. Goulas, W. Ya, M.J.M. Hermans, Microstructure and mechanical properties of medium carbon steel deposits obtained via wire and arc additive manufacturing using metal-cored wire, Metals 9 (6) (2019), https:// \\href{http://doi.org/10.3390/met9060673}{doi.org/10.3390/met9060673}.\n\n[85] A.R. McAndrew, et al., Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement, Addit. Manuf. 21 (2018) 340-349, \\href{https://doi.org/10.1016/j.addma.2018.03.006}{https://doi.org/10.1016/j.addma.2018.03.006}.\n\n[86] S. Bagherifard, et al., Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31, Acta Biomater. 66 (2018) 93-108, \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.actbio.2017.11.032.\n\n[87] P.Y. Li, B.Q. Xiong, Y.A. Zhang, Z.H. Li, Temperature variation and solution treatment of high strength AA7050, Trans. Nonferrous Met. Soc. China (English Ed.", "start_char_idx": 316356, "end_char_idx": 318980, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "4fa54071-d6ef-40da-b945-053e190aa5cf": {"__data__": {"id_": "4fa54071-d6ef-40da-b945-053e190aa5cf", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "94997eed-961e-4cbd-a868-f7894373023c", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "d9ece30b214852c50a041d10996651c28c7391474c984c121f2ee985c2af3a24", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "7956b8c7-c241-45dd-85c5-a79f1ab64491", "node_type": "1", "metadata": {}, "hash": "a9f6449a4aeff7392a059efdad491223a843c98b07eddc02f6e3c8aa7d3c5d4f", "class_name": "RelatedNodeInfo"}}, "text": "[86] S. Bagherifard, et al., Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31, Acta Biomater. 66 (2018) 93-108, \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.actbio.2017.11.032.\n\n[87] P.Y. Li, B.Q. Xiong, Y.A. Zhang, Z.H. Li, Temperature variation and solution treatment of high strength AA7050, Trans. Nonferrous Met. Soc. China (English Ed. 22 (3) (2012) 546-554, \\href{https://doi.org/10.1016/S1003-6326(11)}{https://doi.org/10.1016/S1003-6326(11)} 61212-0.\n\n[88] C.C. Ng, M.M. Savalani, H.C. Man, I. Gibson, Layer manufacturing of magnesium and its alloy structures for future applications, Virtual Phys. Prototyp. 5 (1) (2010) 13-19, \\href{https://doi.org/10.1080/17452751003718629}{https://doi.org/10.1080/17452751003718629}.\n\n[89] B. Zhang, H. Liao, C. Coddet, Effects of processing parameters on properties of selective laser melting Mg-9\\%Al powder mixture, Mater. Des. 34 (2012) 753-758, \\href{https://doi.org/10.1016/j.matdes.2011.06.061}{https://doi.org/10.1016/j.matdes.2011.06.061}.\n\n[90] L. Jauer, W. Meiners, R. Poprawe, Selective laser melting of biodegradable metals, Eur. Cell. Mater. 26 (Supplement 5) (2013) 21.\n\n[91] M. Gieseke, C. N\u00f6lke, S. Kaierle, H.J. Maier, H. Haferkamp, Selective laser melting of magnesium alloys for manufacturing individual implants, Fraunhofer Direct Digit. Manuf. Conf. (2014) 1-6.\n\n[92] T. Kurzynowski, A. Pawlak, I. Smolina, The potential of SLM technology for processing magnesium alloys in aerospace industry, Arch. Civ. Mech. Eng. 20 (1) (2020), \\href{https://doi.org/10.1007/s43452-020-00033-1}{https://doi.org/10.1007/s43452-020-00033-1}.\n\n[93] V. Manakari, G. Parande, M. Gupta, Selective laser melting of magnesium and magnesium alloy powders: a review, Metals 7 (no. 1) (2017), \\href{https://doi.org/}{https://doi.org/} 10.3390/met7010002.\n\n[94] R. Tandon, T. Palmer, M. Gieseke, C. Noelke, S. Kaierle, Additive Manufacturing of Magnesium Alloy Powders: Investigations into Process Development Using elektron $\\mathbb{M A P}+43$ via Laser Powder Bed Fusion and Directed Energy Deposition, World PM 2016 Congr. Exhib., 2016.\n\n[95] D. Hu, et al., Experimental investigation on selective laser melting of bulk net-shape pure magnesium, Mater. Manuf. Process. 30 (11) (2015) 1298-1304, \\href{https://doi.org/10.1080/10426914.2015.1025963}{https://doi.org/10.1080/10426914.2015.1025963}.\n\n[96] M. Salehi, S. Maleksaeedi, H. Farnoush, M.L.S. Nai, G.K. Meenashisundaram, M. Gupta, An investigation into interaction between magnesium powder and Ar gas: implications for selective laser melting of magnesium, Powder Technol.", "start_char_idx": 318530, "end_char_idx": 321213, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "7956b8c7-c241-45dd-85c5-a79f1ab64491": {"__data__": {"id_": "7956b8c7-c241-45dd-85c5-a79f1ab64491", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "4fa54071-d6ef-40da-b945-053e190aa5cf", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "57a10d62b2c749707f6eb1b1fe7f6159c8971788720328b7924b1f004aaeec95", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "c0b094e0-7fd5-49f4-ab56-68f2d7e19e12", "node_type": "1", "metadata": {}, "hash": "5bd4f7d74b7a54244335a19e0c4f2c4cd679f63d42d6f2ad0a22b39c70d94242", "class_name": "RelatedNodeInfo"}}, "text": "Exhib., 2016.\n\n[95] D. Hu, et al., Experimental investigation on selective laser melting of bulk net-shape pure magnesium, Mater. Manuf. Process. 30 (11) (2015) 1298-1304, \\href{https://doi.org/10.1080/10426914.2015.1025963}{https://doi.org/10.1080/10426914.2015.1025963}.\n\n[96] M. Salehi, S. Maleksaeedi, H. Farnoush, M.L.S. Nai, G.K. Meenashisundaram, M. Gupta, An investigation into interaction between magnesium powder and Ar gas: implications for selective laser melting of magnesium, Powder Technol. 333 (2018) 252-261, \\href{https://doi.org/10.1016/j.powtec.2018.04.026}{https://doi.org/10.1016/j.powtec.2018.04.026}.\n\n[97] Y. Zhou, K. Zhang, Y. Liang, J. Cheng, Y. Dai, Selective laser melted magnesium alloys: fabrication, microstructure and property, Materials 15 (20) (2022), \\href{https://doi.org/10.3390/ma15207049}{https://doi.org/10.3390/ma15207049}.\n\n[98] M.M. Savalani, J.M. Pizarro, Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium, Rapid Prototyp. J. 22 (1) (2016) 115-122, \\href{https://doi.org/10.1108/RPJ-07-2013-0076}{https://doi.org/10.1108/RPJ-07-2013-0076}.\n\n[99] B. Proa\u00f1o, et al., Weakest region analysis of non-combustible Mg products fabricated by selective laser melting, Theor. Appl. Fract. Mech. 103 (2019), \\href{https://doi.org/10.1016/j.tafmec.2019.102291}{https://doi.org/10.1016/j.tafmec.2019.102291}.\n\n[100] I. Gibson, D. Rosen, B. Stucker, Standard Terminology for Additive Manufacturing Technologies, Springer, 2013, \\href{https://doi.org/10.1520/F279212A.2}{https://doi.org/10.1520/F279212A.2}.\n\n[101] C.C. Ng, M.M. Savalani, M.L. Lau, H.C. Man, Microstructure and mechanical properties of selective laser melted magnesium, Appl. Surf. Sci. 257 (17) (2011) 7447-7454, \\href{https://doi.org/10.1016/j.apsusc.2011.03.004}{https://doi.org/10.1016/j.apsusc.2011.03.004}.\n\n[102] T. Morishige, Y. Suzuki, T. Takenaka, Extra-hardening of SPD-processed AlMg alloy with minimum grain sizes, Mater. Sci. Forum 1016 (2021) 952-956, \\href{https://doi.org/10.4028/www.scientific.net/MSF.1016.952}{https://doi.org/10.4028/www.scientific.net/MSF.1016.952}. MSF.\n\n[103] Magnesium alloys, J. Sci. Instrum. 4 (2) (1926) 55, \\href{https://doi.org/10.1088/}{https://doi.org/10.1088/} 0950-7671/4/2/407.\n\n[104] A. Pawlak, M. Rosienkiewicz, E. Chlebus, Design of experiments approach in AZ31 powder selective laser melting process optimization, Arch. Civ. Mech. Eng. 17 (1) (2017) 9-18, \\href{https://doi.org/10.1016/j.acme.2016.07.007}{https://doi.org/10.1016/j.acme.2016.07.007}.", "start_char_idx": 320708, "end_char_idx": 323244, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "c0b094e0-7fd5-49f4-ab56-68f2d7e19e12": {"__data__": {"id_": "c0b094e0-7fd5-49f4-ab56-68f2d7e19e12", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "7956b8c7-c241-45dd-85c5-a79f1ab64491", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "18614e5e61254c8be99a320d1c907178bb05b01ae4cf78b59c9baf510842bebb", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "bca3ca16-3799-46d8-831b-ed0483adca49", "node_type": "1", "metadata": {}, "hash": "0b2f51f23f0a3b4266133641ed91e876262ac5898dbf44a4d45eba8158e25956", "class_name": "RelatedNodeInfo"}}, "text": "MSF.\n\n[103] Magnesium alloys, J. Sci. Instrum. 4 (2) (1926) 55, \\href{https://doi.org/10.1088/}{https://doi.org/10.1088/} 0950-7671/4/2/407.\n\n[104] A. Pawlak, M. Rosienkiewicz, E. Chlebus, Design of experiments approach in AZ31 powder selective laser melting process optimization, Arch. Civ. Mech. Eng. 17 (1) (2017) 9-18, \\href{https://doi.org/10.1016/j.acme.2016.07.007}{https://doi.org/10.1016/j.acme.2016.07.007}.\n\n[105] S. Liu, et al., Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy, J. Alloys Compd. 808 (2019), \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.jallcom.2019.06.261.\n\n[106] Selective laser melting of magnesium alloys - ProQuest,\" [Online]. Available: \\href{https://www.proquest.com/docview/2036730696?pqorigsite}{https://www.proquest.com/docview/2036730696?pqorigsite} $=$ gscholar\\&fromopenview $=$ true.\n\n[107] N.A. Zumdick, L. Jauer, L.C. Kersting, T.N. Kutz, J.H. Schleifenbaum, D. Zander, Additive manufactured WE43 magnesium: a comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43, Mater. Char. 147 (2019) 384-397, \\href{https://doi.org/}{https://doi.org/} 10.1016/j.matchar.2018.11.011.\n\n[108] F. B\u00e4r, et al., Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis, Acta Biomater. 98 (2019) 36-49, \\href{https://doi.org/10.1016/j.actbio.2019.05.056}{https://doi.org/10.1016/j.actbio.2019.05.056}.\n\n[109] P. huai Fu, et al., Microstructure and mechanical properties of high strength $\\mathrm{Mg}-15 \\mathrm{Gd}-1 \\mathrm{Zn}-0.4 \\mathrm{Zr}$ alloy additive-manufactured by selective laser melting process, Trans. Nonferrous Met. Soc. China (English Ed. 31 (7) (2021) 1969-1978, \\href{https://doi.org/10.1016/S1003-6326(21)65630-3}{https://doi.org/10.1016/S1003-6326(21)65630-3}.\n\n[110] H. Liao, et al., Microstructure and mechanical properties of laser melting deposited GW103K Mg-RE alloy, Mater. Sci. Eng., A 687 (2017) 281-287, \\href{https://doi.org/10.1016/j.msea.2017.01.084}{https://doi.org/10.1016/j.msea.2017.01.084}.\\\\\n[111] L. Jauer, W. Meiners, S. Vervoort, C. Gayer, N.A. Zumdick, D. Zander, Selective Laser Melting of Magnesium Alloys, World PM 2016 Congr. Exhib., 2016.\n\n[112] Q. Deng, et al., Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting, Mater. Char. 165 (2020), \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.matchar.2020.110377.\n\n[113] Q. Deng, et al., Influence of friction stir processing and aging heat treatment on microstructure and mechanical properties of selective laser melted Mg-Gd-Zr alloy, Addit. Manuf.", "start_char_idx": 322827, "end_char_idx": 325558, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "bca3ca16-3799-46d8-831b-ed0483adca49": {"__data__": {"id_": "bca3ca16-3799-46d8-831b-ed0483adca49", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "c0b094e0-7fd5-49f4-ab56-68f2d7e19e12", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "8d35c27aac10f6417fb5e66cd2317e33264a0fb93eb6affdb064298b5ca1cf61", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "7c5318ab-bb55-4990-97d2-c9e792b0ba99", "node_type": "1", "metadata": {}, "hash": "a6755c5a5b7492422b4d220b5e9ef56899290385e6195e64e82d9d72f39c89ee", "class_name": "RelatedNodeInfo"}}, "text": "Zumdick, D. Zander, Selective Laser Melting of Magnesium Alloys, World PM 2016 Congr. Exhib., 2016.\n\n[112] Q. Deng, et al., Fabrication of high-strength Mg-Gd-Zn-Zr alloy via selective laser melting, Mater. Char. 165 (2020), \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.matchar.2020.110377.\n\n[113] Q. Deng, et al., Influence of friction stir processing and aging heat treatment on microstructure and mechanical properties of selective laser melted Mg-Gd-Zr alloy, Addit. Manuf. 44 (2021), \\href{https://doi.org/10.1016/j.addma}{https://doi.org/10.1016/j.addma}. 2021.102036.\n\n[114] W. Zai, H.C. Man, Y. Su, G. Li, J. Lian, Impact of microalloying element Ga on the glass-forming ability (GFA), mechanical properties and corrosion behavior of $\\mathrm{Mg}-\\mathrm{Zn}-$ Ca bulk metallic glass, Mater. Chem. Phys. 255 (2020), \\href{https://doi.org/10.1016/j.matchemphys.2020.123555}{https://doi.org/10.1016/j.matchemphys.2020.123555}.\n\n[115] C. Shuai, et al., Laser rapid solidification improves corrosion behavior of MgZn-Zr alloy, J. Alloys Compd. 691 (2017) 961-969, \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.jallcom.2016.09.019.\n\n[116] C. Shuai, et al., Preparation and characterization of laser-melted $\\mathrm{Mg}-\\mathrm{Sn}-\\mathrm{Zn}$ alloys for biomedical application, J. Mater. Sci. Mater. Med. 28 (1) (2017), \\href{https://doi.org/10.1007/s10856-016-5825-z}{https://doi.org/10.1007/s10856-016-5825-z}.\n\n[117] C. Liu, M. Zhang, C. Chen, Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous $\\mathrm{Mg}$-Ca alloys produced by laser additive manufacturing, Mater. Sci. Eng., A 703 (2017) 359-371, \\href{https://doi.org/10.1016/j.msea.2017.07.031}{https://doi.org/10.1016/j.msea.2017.07.031}.\n\n[118] X. Niu, H. Shen, J. Fu, J. Feng, Effective control of microstructure evolution in AZ91D magnesium alloy by SiC nanoparticles in laser powder-bed fusion, Mater. Des. 206 (2021), \\href{https://doi.org/10.1016/j.matdes.2021.109787}{https://doi.org/10.1016/j.matdes.2021.109787}.\n\n[119] K. Wei, Z. Wang, X. Zeng, Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components, Mater. Lett. 156 (2015) 187-190, \\href{https://doi.org/10.1016/j.matlet.2015.05.074}{https://doi.org/10.1016/j.matlet.2015.05.074}.\n\n[120] F. Benn, F. D'Elia, K. van Gaalen, M. Li, S. Malinov, A. Kopp, Printability, mechanical and degradation properties of $\\mathrm{Mg}$-(x)Zn elemental powder mixes processed by laser powder bed fusion, Addit. Manuf. Lett. 2 (2022) 100025, \\href{https://doi.org/10.1016/j.addlet.2021.100025}{https://doi.org/10.1016/j.addlet.2021.100025}.", "start_char_idx": 325066, "end_char_idx": 327795, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "7c5318ab-bb55-4990-97d2-c9e792b0ba99": {"__data__": {"id_": "7c5318ab-bb55-4990-97d2-c9e792b0ba99", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "bca3ca16-3799-46d8-831b-ed0483adca49", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "5c616604bdcf34636ee11b3801ab15e5f299848eb77149ed81072184b415bd74", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "11230cca-5c91-4eb7-8653-c2f50d480017", "node_type": "1", "metadata": {}, "hash": "cb658bba32f76b15ca19352789bec1a384c10f34e13e7c0ec43aee3a7aac2fa8", "class_name": "RelatedNodeInfo"}}, "text": "Lett. 156 (2015) 187-190, \\href{https://doi.org/10.1016/j.matlet.2015.05.074}{https://doi.org/10.1016/j.matlet.2015.05.074}.\n\n[120] F. Benn, F. D'Elia, K. van Gaalen, M. Li, S. Malinov, A. Kopp, Printability, mechanical and degradation properties of $\\mathrm{Mg}$-(x)Zn elemental powder mixes processed by laser powder bed fusion, Addit. Manuf. Lett. 2 (2022) 100025, \\href{https://doi.org/10.1016/j.addlet.2021.100025}{https://doi.org/10.1016/j.addlet.2021.100025}.\n\n[121] K. Wei, M. Gao, Z. Wang, X. Zeng, Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy, Mater. Sci. Eng., A 611 (2014) 212-222, \\href{https://doi.org/}{https://doi.org/} 10.1016/j.msea.2014.05.092.\n\n[122] M. Gieseke, R. Tandon, T. Kiesow, Y. Wessarges, Selective laser melting of Elektron\u00ae MAP 43 magnesium powder matthias, Rapid.Tech - Int. Trade Show Conf. Addit. Manuf. Proc. 13th Rapid.Tech Conf. (2016) 244-252, 14 16 June 2016.\n\n[123] Y. Li, et al., Biodegradation-affected fatigue behavior of additively manufactured porous magnesium, Addit. Manuf. 28 (2019) 299-311, https:// \\href{http://doi.org/10.1016/j.addma.2019.05.013}{doi.org/10.1016/j.addma.2019.05.013}\n\n[124] D. Liu, D. Yang, X. Li, S. Hu, Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: a review, J. Mater. Res. Technol. 8 (1) (2019) 1538-1549, \\href{https://doi.org/10.1016/j.jmrt.2018.08}{https://doi.org/10.1016/j.jmrt.2018.08}. 003.\n\n[125] J.J. Park, L.L. Wyman, Phase relationships in magnesium alloys, WADC Tech. Rep. (1957) 57-504 [Online]. Available: \\href{https://www.osti.gov/biblio/}{https://www.osti.gov/biblio/} 4312291\n\n[126] J. Liu, B. Yin, P. Wen, Y. Tian, Laser Powder Bed Fusion of WE43 Magnesium Alloy Porous Scaffolds: Investigation on Densification Behavior and Dimensional Accuracy, 2021, p. 14, \\href{https://doi.org/10.1117/12.2601287}{https://doi.org/10.1117/12.2601287}.\n\n[127] F. Qin, G. Xie, Z. Dan, S. Zhu, I. Seki, Corrosion behavior and mechanical properties of Mg-Zn-Ca amorphous alloys, Intermetallics 42 (2013) 9-13, \\href{https://doi.org/10.1016/j.intermet.2013.04.021}{https://doi.org/10.1016/j.intermet.2013.04.021}.\n\n[128] F. Benn, et al., Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43, Mater. Sci. Eng. C 124 (2021), \\href{https://doi.org/10.1016/j.msec.2021.112016}{https://doi.org/10.1016/j.msec.2021.112016}.", "start_char_idx": 327329, "end_char_idx": 329812, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "11230cca-5c91-4eb7-8653-c2f50d480017": {"__data__": {"id_": "11230cca-5c91-4eb7-8653-c2f50d480017", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "7c5318ab-bb55-4990-97d2-c9e792b0ba99", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "b9ebcadc77fe08c443267088c3982f24aa2dbd86165fd9b7692af7afd56aadff", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "ef8f5ac4-7688-4e32-a154-d8128c0c49e1", "node_type": "1", "metadata": {}, "hash": "950866bc4f4f3146d3d8592d1ce36a3f85df69d18466afa812ab484c82e86d08", "class_name": "RelatedNodeInfo"}}, "text": "[127] F. Qin, G. Xie, Z. Dan, S. Zhu, I. Seki, Corrosion behavior and mechanical properties of Mg-Zn-Ca amorphous alloys, Intermetallics 42 (2013) 9-13, \\href{https://doi.org/10.1016/j.intermet.2013.04.021}{https://doi.org/10.1016/j.intermet.2013.04.021}.\n\n[128] F. Benn, et al., Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43, Mater. Sci. Eng. C 124 (2021), \\href{https://doi.org/10.1016/j.msec.2021.112016}{https://doi.org/10.1016/j.msec.2021.112016}.\n\n[129] D. Bairagi, S. Mandal, A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: current status, challenges, and future prospects, J. Magnesium Alloys 10 (3) (2022) 627-669, https:// \\href{http://doi.org/10.1016/j.jma.2021.09.005}{doi.org/10.1016/j.jma.2021.09.005}.\n\n[130] H. Hyer, L. Zhou, G. Benson, B. McWilliams, K. Cho, Y. Sohn, Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion, Addit. Manuf. 33 (2020), \\href{https://doi.org/10.1016/j.addma.2020.101123}{https://doi.org/10.1016/j.addma.2020.101123}.\n\n[131] A. Kopp, et al., Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds, Acta Biomater. 98 (2019) 23-35, \\href{https://doi.org/}{https://doi.org/} 10.1016/j.actbio.2019.04.012.\n\n[132] Y. Yang, X. Zhou, Q. Li, C. Ayas, A computationally efficient thermomechanical model for wire arc additive manufacturing, Addit. Manuf. 46 (2021), \\href{https://doi.org/10.1016/j.addma.2021.102090}{https://doi.org/10.1016/j.addma.2021.102090}.\n\n[133] J. Wu, et al., Modeling of whole-phase heat transport in laser-based directed energy deposition with multichannel coaxial powder feeding, Addit. Manuf. 59 (2022), \\href{https://doi.org/10.1016/j.addma.2022.103161}{https://doi.org/10.1016/j.addma.2022.103161}.\n\n[134] S.V. Gnedenkov, et al., Magnesium fabricated using additive technology: specificity of corrosion and protection, J. Alloys Compd. 808 (2019), https:// \\href{http://doi.org/10.1016/j.jallcom.2019.07.341}{doi.org/10.1016/j.jallcom.2019.07.341}.\n\n[135] P.A. Hooper, Melt pool temperature and cooling rates in laser powder bed fusion, Addit. Manuf. 22 (2018) 548-559, \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.addma.2018.05.032\n\n[136] L. Pant, S. Gneiger, S. Senck, D. Koutn, Applied Sciences Processing of AZ91D Magnesium Alloy by Laser Powder Bed Fusion, 2023.\n\n[137] B. Yin, et al., Influence of layer thickness on formation quality, microstructure, mechanical properties, and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion, J. Magnesium Alloys (2022), \\href{https://doi.org/10.1016/j.jma.2022.09.016}{https://doi.org/10.1016/j.jma.2022.09.016}.\n\n[138] C.U. Brown, et al., The effects of laser powder bed fusion process parameters on material hardness and density for nickel alloy 625, NIST Adv.", "start_char_idx": 329293, "end_char_idx": 332237, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "ef8f5ac4-7688-4e32-a154-d8128c0c49e1": {"__data__": {"id_": "ef8f5ac4-7688-4e32-a154-d8128c0c49e1", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "11230cca-5c91-4eb7-8653-c2f50d480017", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "f1c25fb7f14a135788b98ea1e3020cf9fc8f4fb6e3df9d5f28ba9964ef55033e", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "71d84e58-6a75-49e3-8db2-8f2b7bc3d346", "node_type": "1", "metadata": {}, "hash": "98fac4243d707a2ac2e9f5c26b118969098a05d9466047b6ce49a506745f1a8d", "class_name": "RelatedNodeInfo"}}, "text": "[137] B. Yin, et al., Influence of layer thickness on formation quality, microstructure, mechanical properties, and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion, J. Magnesium Alloys (2022), \\href{https://doi.org/10.1016/j.jma.2022.09.016}{https://doi.org/10.1016/j.jma.2022.09.016}.\n\n[138] C.U. Brown, et al., The effects of laser powder bed fusion process parameters on material hardness and density for nickel alloy 625, NIST Adv. Manuf. Ser. (2018) 100-119, \\href{https://doi.org/10.6028/NIST.AMS.100-19}{https://doi.org/10.6028/NIST.AMS.100-19} [Online]. Available:.\n\n[139] X. Niu, H. Shen, J. Fu, J. Yan, Y. Wang, Corrosion behaviour of laser powder bed fused bulk pure magnesium in hank's solution, Corrosion Sci. 157 (2019) 284-294, \\href{https://doi.org/10.1016/j.corsci.2019.05.026}{https://doi.org/10.1016/j.corsci.2019.05.026}.\n\n[140] C. Shuai, B. Wang, S. Bin, S. Peng, C. Gao, Interfacial strengthening by reduced graphene oxide coated with MgO in biodegradable Mg composites, Mater. Des. 191 (2020), \\href{https://doi.org/10.1016/j.matdes.2020.108612}{https://doi.org/10.1016/j.matdes.2020.108612}.\n\n[141] C. Shuai, B. Wang, Y. Yang, S. Peng, C. Gao, 3D honeycomb nanostructureencapsulated magnesium alloys with superior corrosion resistance and mechanical properties, Compos. B Eng. 162 (2019) 611-620, \\href{https://doi.org/}{https://doi.org/} 10.1016/j.compositesb.2019.01.031.\n\n[142] C. Su, J. Wang, H. Li, Z. You, J. Li, Binder-jetting additive manufacturing of Mg alloy densified by two-step sintering process, J. Manuf. Process. 72 (2021) 71-79, \\href{https://doi.org/10.1016/j.jmapro.2021.09.061}{https://doi.org/10.1016/j.jmapro.2021.09.061}.\n\n[143] J.X. Tao, et al., Influence of graphene oxide (GO) on microstructure and biodegradation of ZK30-xGO composites prepared by selective laser melting, J. Magnesium Alloys 8 (3) (2020) 952-962, \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.jma.2019.10.004.\n\n[144] F. Najafkhani, S. Kheiri, B. Pourbahari, H. Mirzadeh, Recent advances in the kinetics of normal/abnormal grain growth: a review, Arch. Civ. Mech. Eng. 21 (1) (2021), \\href{https://doi.org/10.1007/s43452-021-00185-8}{https://doi.org/10.1007/s43452-021-00185-8}.\n\n[145] Additive Manufacturing of Magnesium-Based Alloys through Laser-Based Approach\".\n\n[146] F. Ghorbani, M. Emamy, H. Mirzadeh, Enhanced tensile properties of as-cast Mg-10Al magnesium alloy via strontium addition and hot working, Arch. Civ. Mech. Eng. 21 (2) (2021), \\href{https://doi.org/10.1007/s43452-021-00241-3}{https://doi.org/10.1007/s43452-021-00241-3}.\n\n[147] A. Mostafaei, et al., Defects and anomalies in powder bed fusion metal additive manufacturing, Curr. Opin. Solid State Mater. Sci.", "start_char_idx": 331767, "end_char_idx": 334515, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "71d84e58-6a75-49e3-8db2-8f2b7bc3d346": {"__data__": {"id_": "71d84e58-6a75-49e3-8db2-8f2b7bc3d346", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "ef8f5ac4-7688-4e32-a154-d8128c0c49e1", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "42f27eed65ca4fecd084992fc222c3c012de329fee977a8520fd8b7d48c4b4f0", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "9b65f919-5a4f-4a63-bba1-d2441a1b650d", "node_type": "1", "metadata": {}, "hash": "36949bea9712399c9e9b0b15b8a2e554de0fb03bf5de653deb0d660efb3f4ec3", "class_name": "RelatedNodeInfo"}}, "text": "[145] Additive Manufacturing of Magnesium-Based Alloys through Laser-Based Approach\".\n\n[146] F. Ghorbani, M. Emamy, H. Mirzadeh, Enhanced tensile properties of as-cast Mg-10Al magnesium alloy via strontium addition and hot working, Arch. Civ. Mech. Eng. 21 (2) (2021), \\href{https://doi.org/10.1007/s43452-021-00241-3}{https://doi.org/10.1007/s43452-021-00241-3}.\n\n[147] A. Mostafaei, et al., Defects and anomalies in powder bed fusion metal additive manufacturing, Curr. Opin. Solid State Mater. Sci. 26 (2) (2022), \\href{https://doi.org/10.1016/j.cossms.2021.100974}{https://doi.org/10.1016/j.cossms.2021.100974}.\n\n[148] Y. Geng, I. Panchenko, X. Chen, Y. Ivanov, S. Konovalov, Wire arc additive manufacturing Al-5.0 Mg alloy: microstructures and phase composition, Mater. Char. 187 (2022), \\href{https://doi.org/10.1016/j.matchar.2022.111875}{https://doi.org/10.1016/j.matchar.2022.111875}.\n\n[149] J. Li, et al., Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in $\\mathrm{NaCl}$ solution, J. Magnesium Alloys 11 (1) (2023) 217-229, \\href{https://doi.org/}{https://doi.org/} 10.1016/j.jma.2021.04.007.\n\n[150] Y. Guo, et al., Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing, J. Magnesium Alloys 10 (7) (2022) 1930-1940, https:// \\href{http://doi.org/10.1016/j.jma.2021.04.006}{doi.org/10.1016/j.jma.2021.04.006}.\n\n[151] Y. Chen, et al., In-Situ aging treatment by preheating to obtain high-strength zk60 Mg alloy processed by laser powder bed fusion, SSRN Electron. J. (2022), \\href{https://doi.org/10.2139/ssrn}{https://doi.org/10.2139/ssrn}. 4183262.\n\n[152] Q. Deng, et al., Microstructure evolution and mechanical properties of a high-strength Mg-10Gd-3Y-1Zn-0.4Zr alloy fabricated by laser powder bed fusion, Addit. Manuf. 49 (2022), \\href{https://doi.org/10.1016/j.addma.2021}{https://doi.org/10.1016/j.addma.2021}. 102517.\\\\\n[153] M. Li, et al., Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 Mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications, Mater. Sci. Eng. C 119 (2021), https:// \\href{http://doi.org/10.1016/j.msec.2020.111623}{doi.org/10.1016/j.msec.2020.111623}.\n\n[154] J. Liu, B. Yin, Z. Sun, P. Wen, Y. Zheng, Y. Tian, Hot cracking in ZK60 magnesium alloy produced by laser powder bed fusion process, Mater. Lett. 301 (2021), \\href{https://doi.org/10.1016/j.matlet.2021.130283}{https://doi.org/10.1016/j.matlet.2021.130283}.\n\n[155] Y. Qin, et al., Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: formation quality, microstructure and mechanical properties, Mater. Des. 181 (2019), \\href{https://doi.org/10.1016/j.matdes.2019.107937}{https://doi.org/10.1016/j.matdes.2019.107937}.", "start_char_idx": 334014, "end_char_idx": 336885, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "9b65f919-5a4f-4a63-bba1-d2441a1b650d": {"__data__": {"id_": "9b65f919-5a4f-4a63-bba1-d2441a1b650d", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "71d84e58-6a75-49e3-8db2-8f2b7bc3d346", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "40426d6925a81ebd82a079bf24186aa3b5b8800ea383ce09582902c3b6401598", "class_name": "RelatedNodeInfo"}, "3": {"node_id": "9c9771d7-630e-44b3-8637-aab01389854f", "node_type": "1", "metadata": {}, "hash": "b29c32770da84f86daa54c6bff52fe506615e586a721c73983cc87d84552c6c1", "class_name": "RelatedNodeInfo"}}, "text": "[154] J. Liu, B. Yin, Z. Sun, P. Wen, Y. Zheng, Y. Tian, Hot cracking in ZK60 magnesium alloy produced by laser powder bed fusion process, Mater. Lett. 301 (2021), \\href{https://doi.org/10.1016/j.matlet.2021.130283}{https://doi.org/10.1016/j.matlet.2021.130283}.\n\n[155] Y. Qin, et al., Additive manufacturing of biodegradable Zn-xWE43 porous scaffolds: formation quality, microstructure and mechanical properties, Mater. Des. 181 (2019), \\href{https://doi.org/10.1016/j.matdes.2019.107937}{https://doi.org/10.1016/j.matdes.2019.107937}.\n\n[156] C. Wang, et al., Amorphous magnesium alloy with high corrosion resistance fabricated by laser powder bed fusion, J. Alloys Compd. 897 (2022), https:// \\href{http://doi.org/10.1016/j.jallcom.2021.163247}{doi.org/10.1016/j.jallcom.2021.163247}.\n\n[157] S. Julmi, et al., Development of a laser powder bed fusion process tailored for the additive manufacturing of high-quality components made of the commercial magnesium alloy WE43, Materials 14 (4) (2021) 1-19, https:// \\href{http://doi.org/10.3390/ma14040887}{doi.org/10.3390/ma14040887}.\n\n[158] F. Badkoobeh, H. Mostaan, M. Rafiei, H.R. Bakhsheshi-Rad, F. Berto, Friction stir welding/processing of mg-based alloys: a critical review on advancements and challenges, Materials 14 (21) (2021), \\href{https://doi.org/10.3390/}{https://doi.org/10.3390/} ma14216726.\n\n[159] S. Song, et al., Superhydrophobic composite coating for reliable corrosion protection of Mg alloy, Mater. Des. 215 (2022), \\href{https://doi.org/10.1016/}{https://doi.org/10.1016/} j.matdes.2022.110433.\n\n[160] Y. Sun, H. Helmholz, R. Willumeit-R\u00f6mer, Preclinical in vivo research of magnesium-based implants for fracture treatment: a systematic review of animal model selection and study design, J. Magnesium Alloys 9 (2) (2021) 351-361, \\href{https://doi.org/10.1016/j.jma.2020.09.011}{https://doi.org/10.1016/j.jma.2020.09.011}.\n\n[161] N.A. T. D, A. A. K, A. G. I, Q.N.A. K. T, B. D. H, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges, Compos. B Eng. 143 (2018) 172-196,\n\n[162] S. Dasgupta, S. Ray, Additive manufacturing of biomaterials, Addit. Manuf. Process. Biomed. Eng. (2022) 165-204, \\href{https://doi.org/10.1201/}{https://doi.org/10.1201/} 9781003217961-9.\n\n[163] W. Gong, R. Zheng, S. Harjo, T. Kawasaki, K. Aizawa, N. Tsuji, In-situ observation of twinning and detwinning in AZ31 alloy, J. Magnesium Alloys (2022), \\href{https://doi.org/10.1016/j.jma.2022.02.002}{https://doi.org/10.1016/j.jma.2022.02.002}.\n\n[164] A. Bhattacharyya, G. Janarthanan, I. Noh, Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting, Addit. Manuf. 37 (2021), \\href{https://doi.org/10.1016/j.addma}{https://doi.org/10.1016/j.addma}. 2020. 101639.", "start_char_idx": 336349, "end_char_idx": 339159, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}, "9c9771d7-630e-44b3-8637-aab01389854f": {"__data__": {"id_": "9c9771d7-630e-44b3-8637-aab01389854f", "embedding": null, "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "excluded_embed_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "excluded_llm_metadata_keys": ["file_name", "file_type", "file_size", "creation_date", "last_modified_date", "last_accessed_date"], "relationships": {"1": {"node_id": "9a18e54a-ddf1-496e-9042-963a11b1443a", "node_type": "4", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "41452639690ceafac946d6cdfda4601f2df0ca20c16bf9ca35bd02871f812f7b", "class_name": "RelatedNodeInfo"}, "2": {"node_id": "9b65f919-5a4f-4a63-bba1-d2441a1b650d", "node_type": "1", "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}, "hash": "d3374128585fe809cffff8a96f528394f7c412a196754a7d21f3c4d7b9d9c559", "class_name": "RelatedNodeInfo"}}, "text": "[163] W. Gong, R. Zheng, S. Harjo, T. Kawasaki, K. Aizawa, N. Tsuji, In-situ observation of twinning and detwinning in AZ31 alloy, J. Magnesium Alloys (2022), \\href{https://doi.org/10.1016/j.jma.2022.02.002}{https://doi.org/10.1016/j.jma.2022.02.002}.\n\n[164] A. Bhattacharyya, G. Janarthanan, I. Noh, Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting, Addit. Manuf. 37 (2021), \\href{https://doi.org/10.1016/j.addma}{https://doi.org/10.1016/j.addma}. 2020. 101639.\n\n[165] E. Aghion, Biodegradable metals, Metals 8 (10) (2018), \\href{https://doi.org/}{https://doi.org/} 10.3390/met8100804.\n\n[166] L. Jauer, W. Meiners, S. Vervoort, C. Gayer, N. A. Zumdick, and D. Zander, \"World PM2016-AM-Powder Bed Based Technologies I Manuscript Refereed by Dr James Sears (GE Global Research, USA) Selective Laser Melting of Magnesium Alloys\".\n\n[167] J. Matena, et al., Comparison of selective laser melted titanium and magnesium implants coated with PCL, Int. J. Mol. Sci. 16 (6) (2015) 13287-13301, \\href{https://doi.org/10.3390/ijms160613287}{https://doi.org/10.3390/ijms160613287}.\n\n[168] Y. Yang, et al., System development, formability quality and microstructure evolution of selective laser-melted magnesium, Virtual Phys. Prototyp. 11 (3) (2016) 173-181, \\href{https://doi.org/10.1080/17452759.2016.1210522}{https://doi.org/10.1080/17452759.2016.1210522}.\n\n[169] Y. Li, et al., Additively manufactured biodegradable porous magnesium, Acta Biomater. 67 (2018) 378-392, \\href{https://doi.org/10.1016/j.actbio.2017.12.008}{https://doi.org/10.1016/j.actbio.2017.12.008}.\n\n\\begin{itemize}\n \\item \n\\end{itemize}\n\n\n\\end{document}", "start_char_idx": 338631, "end_char_idx": 340312, "text_template": "{metadata_str}\n\n{content}", "metadata_template": "{key}: {value}", "metadata_seperator": "\n", "class_name": "TextNode"}, "__type__": "1"}}, "docstore/ref_doc_info": {"9a18e54a-ddf1-496e-9042-963a11b1443a": {"node_ids": ["e4bd01eb-3fa7-4b4d-a381-3ea6141b8be3", "673424fd-d916-450a-b292-75b5bb84cb09", "ed4ee51b-36a5-451c-b4f9-a3f57a0d3ab5", "99ecce95-6994-4014-8b7a-36e0c81eed90", "5c190567-758c-46b4-ac7c-2e0f1c618e4e", "cfecc397-af6e-4729-b3ee-3a0ec15ffff7", "2d6ca73c-9c31-4a80-a61a-784342cde399", "bb840724-5538-4bde-843e-9b92558941b9", "36c5414e-a0bb-4b38-a3c6-a02b39bc9e35", "81a0197c-6637-42df-a7d5-ca885d3d06d8", "48c48556-bece-4843-a015-37eac49c1a6d", "4eca146a-b562-4033-8325-3fc7dc1fc342", "82be0d54-cd1f-440e-b6b7-034148371aac", "1a5755ec-1470-4e34-b368-4a45b33c4522", "0c3530d8-e8c5-4150-bedb-e9b50ec5b9f8", "3b806712-5617-4bd3-bdc8-1d89b5751653", "7330391f-03c6-4315-9bd3-b376521f83fd", "2592b19c-69d6-4f0f-b392-3af1656d887d", "0c2e4eca-04e0-4228-84f6-8d9540ba34f4", "28ce0338-5e29-40c8-a713-cb86d5d79fc8", "c832828b-552e-472e-82ad-f3ff4448f72e", "c79760a7-e752-4787-b5a7-24db5e2f76d8", "abd3a2a7-00b9-4afe-83f5-dfae36ab32f6", "2a0fcb8c-991c-4bc0-9be5-4643900f4bd5", "f79ca2b0-3439-4842-8e57-367d07a9c2d7", "ac95bbc2-1f8f-4aee-9b77-27dbb16f6bbb", "56f3b1fc-e638-42e0-a2d2-c1b91710efe9", "5d1fa984-43ca-452f-9015-66ab8fe879d7", "3ec373f6-5abc-47e3-885c-4ba6f67b4352", "c3f304a4-e0c7-40b5-90e5-d9e99ef97007", "b31335e2-ac57-4a66-820b-b87998accc9e", "907334f6-160e-45d6-ab4a-5273c568a6b3", "10e8ec3e-4a22-459f-a3fb-eb6b537e6c61", "54ca17ed-07cf-4af4-8b9b-53f93b6d1c12", "aa53506c-5961-4f97-b0b2-b334b648a052", "4fe633fc-1f81-40ea-990a-6883ae5cc153", "d8a9ef1e-93b2-4d87-a33a-3279db65af14", "3e4ad4b6-8c13-41e1-8e7b-1385bd1a324f", "b272570a-eae0-4341-844b-96397a39bf72", "07898340-a860-4649-9219-0876339685a1", "ffa63324-5ed8-4273-ad92-a5a7d63721b2", "e8d20761-c979-4b2f-82cb-69ebe4429642", "2ebf4c3d-3ca2-4096-a4b0-58de45bab59b", "4cec025f-2498-411f-86f6-4d03c6346eab", "26bce920-1a7e-4fc3-90c7-b891a2e30029", "bf9ff556-444c-4f2c-98ff-473ac9cb54e8", "67ea6b1c-83a7-4852-999e-642ba5f783c5", "4c63ae86-1565-4493-927d-409495ee4a42", "6dd4a79c-b35f-4f6e-919c-11892cf155b0", "aa5111e2-21f9-4544-b49b-ec80d909aff9", "4f098efd-d838-4081-9694-e903a81a695d", "5a068710-18a1-43bd-9de9-c6980b846d60", "c25cba29-6ec1-4d72-8927-70c5edbcb6aa", "670fae95-1489-43df-86bc-26b65555b40a", "57838dbe-47e5-4e43-ba29-6bf178028ca3", "19bbac30-e545-44ad-a880-86e06b655b46", "23f2d394-6ec9-442b-9a34-994f5189f86d", "c697a27b-7995-42e7-8388-6cd361310a57", "59ac3f05-e94b-424b-8fa5-c6e8002bf93f", "99cbdec6-e4bb-4473-bd56-40f60b10a7ef", "a64cc6cb-e9fc-42ad-b6a9-9b38e045ef86", "0be36d74-8168-40a6-9b2c-86e585ca0a7c", "69b03a7b-29e4-48dc-a94d-69a6fe0c96f7", "dafdd05f-f077-4848-a114-82459c16b0bc", "9ef9bc3f-9d0b-4187-ac6a-9e86eb2fb0d7", "8577b3f2-8d77-4a39-9a02-bd100e91685c", "3a0a24f3-e769-486b-96e0-de3692a77dab", "1ab625a4-f9b9-4e80-8c1b-2ab12a7c6c26", "c5881c90-aff7-4df7-9136-6c3ae77b894c", "4a10cc81-261f-41fc-b267-8fca901bb262", "6144898a-e7cd-40fc-96a7-e04e691cb259", "0da32b0c-1ee5-42bb-85c1-e44863b8bf15", "c5819f9b-84b9-4086-9153-8507cecf0475", "5321f1ec-8a55-4ad7-97f6-b5d806b56481", "dcd750c0-23aa-49f3-8055-3f02d134a827", "1c36a1ca-3004-4f4e-ab8a-c98ee8c1cacd", "cb30f61d-facc-481d-8284-7a523c9ba61b", "c0190558-a3cc-48c0-a4b7-b21e4e88789e", "3907ac02-e706-43aa-8ec9-91b032752c86", "02339fb2-e1a4-4777-b1ca-5c73b8771270", "3a4e95cf-322f-4711-9bd0-ad526fb87d91", "e2ce9b03-eade-4174-ae33-911e97d095ce", "566bebaf-ff58-4879-8b53-346cd4348907", "c9a5e985-c7d1-4595-83d2-d79ce264abcd", "d5fc34f7-109e-4633-8aa4-a967050815f6", "46fe9d2d-f09d-4d15-97d5-a5997db55104", "a2d814d7-c033-4b8d-8dda-fff09da8faf4", "78cfa629-e466-41ee-a385-87f6e6fdd357", "769413ae-8c11-499f-ad05-bd26e6b890a9", "2833ee28-0440-4088-9370-42beff55e684", "d08bac37-1f3c-4e5c-87f5-15893f68488b", "a7ef2396-6eab-4f98-9de6-f670223c0fab", "3383bc3f-918c-4591-acc0-d3cd131e4510", "ab791615-b307-480c-b6d9-838468ab8af9", "eb5815c8-6c62-491a-930c-1937697a77a7", "831181c0-1c6f-4cd5-8d98-5202c994988a", "bba1cc5b-ae73-41ba-b5f8-1842b2053080", "f964a77c-d472-40b7-9511-39696d9844d8", "7f3dcdeb-5ae5-4879-bf15-44176fe4c674", "bccfce7d-f6d4-4c66-bb3d-43b80b3f417e", "3a7129e2-cc6f-47a4-bb3d-19ffad54801f", "02c215cf-4c0b-482d-a58e-f5a39f2e1333", "5c0d43af-4ccb-4f69-b9dc-3a91946150bd", "36b388dd-8dc7-4eb1-987e-0f381ed51893", "287e9b97-5f5b-4e22-8b6d-135537422451", "d15af1bf-9056-4b90-ba72-c5129226d4eb", "11d831ea-8cfc-4797-bfe3-7f3f4ed84c7e", "0a9995be-0ddc-416b-9201-0ce33e7fe993", "857184c9-a2f2-4a94-9406-3d21bb995e36", "08ad9555-da95-4b6a-be87-1bde785a4511", "e6763634-8a64-46e9-ace5-95492d7011b7", "94997eed-961e-4cbd-a868-f7894373023c", "4fa54071-d6ef-40da-b945-053e190aa5cf", "7956b8c7-c241-45dd-85c5-a79f1ab64491", "c0b094e0-7fd5-49f4-ab56-68f2d7e19e12", "bca3ca16-3799-46d8-831b-ed0483adca49", "7c5318ab-bb55-4990-97d2-c9e792b0ba99", "11230cca-5c91-4eb7-8653-c2f50d480017", "ef8f5ac4-7688-4e32-a154-d8128c0c49e1", "71d84e58-6a75-49e3-8db2-8f2b7bc3d346", "9b65f919-5a4f-4a63-bba1-d2441a1b650d", "9c9771d7-630e-44b3-8637-aab01389854f"], "metadata": {"file_path": "/home/achuthchandrasekhar/Documents/AMGPT/advanced_rag_code/rag_docs_final_review_tex_merged/aluminum_magnesium.txt", "file_name": "aluminum_magnesium.txt", "file_type": "text/plain", "file_size": 340355, "creation_date": "2024-07-10", "last_modified_date": "2024-07-10"}}}} \ No newline at end of file