Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,329 Bytes
02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 61fbdeb ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import torch
import torch.nn as nn
from transformers import CLIPTextModel
from transformers.models.clip.modeling_clip import CLIPAttention
from typing import Optional, Tuple, Union
from transformers.modeling_outputs import BaseModelOutputWithPooling
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from diffusers import (
StableDiffusionPipeline,
UNet2DConditionModel,
DDIMScheduler,
)
# from transformers.models.clip.modeling_clip import _make_causal_mask, _expand_mask
_make_causal_mask = AttentionMaskConverter._make_causal_mask
_expand_mask = AttentionMaskConverter._expand_mask
from .util import perturb_tensor
def create_arc2face_pipeline(base_model_path="models/sd15-dste8-vae.safetensors",
dtype=torch.float16, unet_only=False):
unet = UNet2DConditionModel.from_pretrained(
'models/arc2face', subfolder="arc2face", torch_dtype=dtype
)
if unet_only:
return unet
text_encoder = CLIPTextModelWrapper.from_pretrained(
'models/arc2face', subfolder="encoder", torch_dtype=dtype
)
noise_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
pipeline = StableDiffusionPipeline.from_single_file(
base_model_path,
text_encoder=text_encoder,
unet=unet,
torch_dtype=dtype,
safety_checker=None
)
pipeline.scheduler = noise_scheduler
return pipeline
# Extend CLIPAttention by using multiple k_proj and v_proj in each head.
# To avoid too much increase of computation, we don't extend q_proj.
class CLIPAttentionMKV(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config, multiplier=2):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.multiplier = multiplier
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim * self.multiplier)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim * self.multiplier)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
# The (approximately) repeated token features are repeated along the last dim in tensor
# (multiplier * num_heads * head_dim), and then reshaped to (bsz, -1, num_heads, head_dim).
# Therefore, the "multiplier" dim is tucked into the seq_len dim, which looks like
# [token1_emb, token1_emb, token2_emb, token2_emb, ..., tokenN_emb, tokenN_emb].
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
# clip_attn_layer is usually self.
def extend_weights(self, clip_attn_layer, layer_idx, multiplier, perturb_std=0.2,
perturb_std_is_relative=True, perturb_keep_norm=False, verbose=False):
ORIG_V_SHAPE = list(clip_attn_layer.v_proj.weight.shape)
ORIG_V_SHAPE_D0 = ORIG_V_SHAPE[0]
ORIG_K_SHAPE = list(clip_attn_layer.k_proj.weight.shape)
ORIG_K_SHAPE_D0 = ORIG_K_SHAPE[0]
self.multiplier *= multiplier
# q_proj and out_proj are the same as the original CLIPAttention.
self.q_proj.weight.data = clip_attn_layer.q_proj.weight.data.clone()
self.q_proj.bias.data = clip_attn_layer.q_proj.bias.data.clone()
self.out_proj.weight.data = clip_attn_layer.out_proj.weight.data.clone()
self.out_proj.bias.data = clip_attn_layer.out_proj.bias.data.clone()
# bias doesn't need noise perturbation, as after the weights are noised,
# different copies of the weight/bias will receive different gradients,
# making the bias terms diverge and identifiable after training.
self.k_proj.bias.data = clip_attn_layer.k_proj.bias.data.repeat(multiplier)
self.v_proj.bias.data = clip_attn_layer.v_proj.bias.data.repeat(multiplier)
self.k_proj.weight.data = clip_attn_layer.k_proj.weight.data.repeat(multiplier, 1)
self.v_proj.weight.data = clip_attn_layer.v_proj.weight.data.repeat(multiplier, 1)
# Correct the out_features attribute of k_proj and v_proj.
self.k_proj.out_features = self.k_proj.weight.shape[0]
self.v_proj.out_features = self.v_proj.weight.shape[0]
if perturb_std > 0:
# Adding noise to the extra copies of the weights (keep the first copy unchanged).
self.v_proj.weight.data[ORIG_V_SHAPE_D0:] = \
perturb_tensor(self.v_proj.weight.data[ORIG_V_SHAPE_D0:],
perturb_std, perturb_std_is_relative, perturb_keep_norm, verbose=verbose)
if verbose:
NEW_V_SHAPE = list(self.v_proj.weight.shape)
NOISED_V_SHAPE = list(self.v_proj.weight.data[ORIG_V_SHAPE_D0:].shape)
print(f"Layer {layer_idx}: {NOISED_V_SHAPE} in {NEW_V_SHAPE} of v_proj is added with {perturb_std} noise")
# Adding noise to the extra copies of the weights.
self.k_proj.weight.data[ORIG_K_SHAPE_D0:] = \
perturb_tensor(self.k_proj.weight.data[ORIG_K_SHAPE_D0:],
perturb_std, perturb_std_is_relative, perturb_keep_norm, verbose=verbose)
if verbose:
NEW_K_SHAPE = list(self.k_proj.weight.shape)
NOISED_K_SHAPE = list(self.k_proj.weight.data[ORIG_K_SHAPE_D0:].shape)
print(f"Layer {layer_idx}: {NOISED_K_SHAPE} in {NEW_K_SHAPE} of k_proj is added with {perturb_std} noise")
def squeeze_weights(self, clip_attn_layer, divisor):
if self.multiplier % divisor != 0:
breakpoint()
self.multiplier //= divisor
self.k_proj.bias.data = clip_attn_layer.k_proj.bias.data.reshape(divisor, -1).mean(dim=0)
self.v_proj.bias.data = clip_attn_layer.v_proj.bias.data.reshape(divisor, -1).mean(dim=0)
self.k_proj.weight.data = clip_attn_layer.k_proj.weight.data.reshape(divisor, -1, self.k_proj.weight.shape[1]).mean(dim=0)
self.v_proj.weight.data = clip_attn_layer.v_proj.weight.data.reshape(divisor, -1, self.v_proj.weight.shape[1]).mean(dim=0)
# Correct the out_features attribute of k_proj and v_proj.
self.k_proj.out_features = self.k_proj.weight.shape[0]
self.v_proj.out_features = self.v_proj.weight.shape[0]
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
query_states = self.q_proj(hidden_states) * self.scale
# For key_states and value_states, the multiplier is absorbed into the seq_len (dim 1, shape specified as -1).
# [token0_head_emb, token0_head_emb, token1_head_emb, token1_head_emb, ..., tokenN-1_head_emb, tokenN-1_head_emb].
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
# src_len0 is the original src_len without the multiplier.
src_len0 = src_len // self.multiplier
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2).contiguous())
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len0):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len0)}, but is"
f" {causal_attention_mask.size()}"
)
# The last dim of attn_weights corresponds to [token0, token0, token1, token1, ..., tokenN-1, tokenN-1].
# If reshaping it as (self.multiplier, src_len0), it will become
# [[token0, token0, token1, token1, ..., tokenN//2], [tokenN//2+1, tokenN//2+1, ..., tokenN-1, tokenN-1]],
# and the mask will be applied to wrong elements.
# If reshaping it as (src_len0, self.multiplier), it will become
# [[token0, token1, ..., tokenN-1], [token0, token1, ..., tokenN-1]], and then
# the mask at element i will mask all the multiplier elements at i, which is desired.
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len0, self.multiplier) + causal_attention_mask.unsqueeze(4)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len0):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len0)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len0, self.multiplier) + attention_mask.unsqueeze(4)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
class CLIPTextModelWrapper(CLIPTextModel):
# Adapted from https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/clip/modeling_clip.py#L812
# Modified to accept precomputed token embeddings "input_token_embs" as input or calculate them from input_ids and return them.
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
input_token_embs: Optional[torch.Tensor] = None,
hidden_state_layer_weights: Optional[torch.Tensor] = None,
return_token_embs: Optional[bool] = False,
) -> Union[Tuple, torch.Tensor, BaseModelOutputWithPooling]:
if return_token_embs:
return self.text_model.embeddings.token_embedding(input_ids)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_attentions = output_attentions if output_attentions is not None else self.text_model.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.text_model.config.output_hidden_states
)
if hidden_state_layer_weights is not None:
output_hidden_states = True
return_dict = return_dict if return_dict is not None else self.text_model.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.text_model.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=input_token_embs)
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.text_model.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
# output_hidden_states is False by default, and only True if hidden_state_layer_weights is provided.
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If output_hidden_states is True, then encoder_outputs[0] is last_hidden_state [1, 22, 768].
# encoder_outputs[1] is hidden_states, which is a tuple of 13 hidden states, each being [1, 22, 768].
# encoder_outputs[0] == encoder_outputs[1][12].
if hidden_state_layer_weights is None:
last_hidden_state = encoder_outputs[0]
else:
num_hidden_state_layers = len(hidden_state_layer_weights)
last_hidden_states = encoder_outputs[1][-num_hidden_state_layers:]
hidden_state_layer_weights = hidden_state_layer_weights.to(last_hidden_states[0].dtype)
# Normalize the weights of to sum to 1 across layers.
# hidden_state_layer_weights: [3, 1] or [3, 768].
hidden_state_layer_weights = hidden_state_layer_weights / hidden_state_layer_weights.sum(dim=0, keepdim=True)
# [3, 1/768] -> [3, 1, 1, 1/768]
hidden_state_layer_weights = hidden_state_layer_weights.unsqueeze(1).unsqueeze(1)
# A weighted sum of last_hidden_states.
# [3, 1, 22, 768] * [3, 1, 1, 1/768] -> [3, 1, 22, 768] -> [1, 22, 768]
last_hidden_state = (torch.stack(last_hidden_states, dim=0) * hidden_state_layer_weights).sum(dim=0)
last_hidden_state = self.text_model.final_layer_norm(last_hidden_state)
# self.text_model.eos_token_id == 2 is True.
if self.text_model.eos_token_id == 2:
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
# ------------------------------------------------------------
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
]
else:
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.text_model.eos_token_id)
.int()
.argmax(dim=-1),
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# Applied to all attention layers in the encoder, if the corresponding multiplier is not 1.
# The layer indexed by end_layer_idx is not included.
# If both layer indices are -1, then apply to all layers (0-11).
def extend_clip_attention_MKV_multiplier(self, prompt2token_proj_attention_multipliers, perturb_std=0.1):
num_extended_layers = 0
for layer_idx, layer in enumerate(self.text_model.encoder.layers):
multiplier = prompt2token_proj_attention_multipliers[layer_idx]
if multiplier == 1:
continue
# This shouldn't happen, unless self_attn has already been extended as CLIPAttentionMKV.
if not isinstance(layer.self_attn, (CLIPAttention, CLIPAttentionMKV)):
breakpoint()
old_attn_layer = layer.self_attn
if not isinstance(old_attn_layer, CLIPAttentionMKV):
layer.self_attn = CLIPAttentionMKV(old_attn_layer.config, 1)
# Extends the v_proj and k_proj weights in the self_attn layer.
layer.self_attn.extend_weights(old_attn_layer, layer_idx, multiplier, perturb_std, verbose=True)
num_extended_layers += 1
return num_extended_layers
# Applied to layers [begin_layer_idx, end_layer_idx) in the encoder.
# The layer indexed by end_layer_idx is not included.
# If both layer indices are -1, then apply to all layers (0-11).
def squeeze_clip_attention_MKV_divisor(self, prompt2token_proj_attention_divisors):
num_squeezed_layers = 0
for layer_idx, layer in enumerate(self.text_model.encoder.layers):
divisor = prompt2token_proj_attention_divisors[layer_idx]
if divisor == 1:
continue
# This shouldn't happen, unless self_attn has already been extended as CLIPAttentionMKV.
if not isinstance(layer.self_attn, (CLIPAttention, CLIPAttentionMKV)):
breakpoint()
old_attn_layer = layer.self_attn
if not isinstance(old_attn_layer, CLIPAttentionMKV):
layer.self_attn = CLIPAttentionMKV(old_attn_layer.config, 1)
# Squeeze the k_proj and v_proj weights in the self_attn layer.
layer.self_attn.squeeze_weights(old_attn_layer, divisor)
num_squeezed_layers += 1
return num_squeezed_layers
|