File size: 20,329 Bytes
02cc20b
 
 
 
ad88a0b
02cc20b
 
ad88a0b
 
 
 
 
02cc20b
 
 
 
ad88a0b
 
61fbdeb
ad88a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad88a0b
 
 
 
 
 
 
 
02cc20b
ad88a0b
02cc20b
 
 
 
 
 
 
 
 
 
ad88a0b
02cc20b
 
ad88a0b
 
 
 
 
02cc20b
ad88a0b
02cc20b
 
ad88a0b
 
02cc20b
 
 
ad88a0b
02cc20b
 
 
ad88a0b
 
02cc20b
 
 
ad88a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad88a0b
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad88a0b
02cc20b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad88a0b
02cc20b
 
ad88a0b
02cc20b
 
 
ad88a0b
 
02cc20b
 
 
 
 
 
 
ad88a0b
 
02cc20b
 
 
ad88a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import torch
import torch.nn as nn
from transformers import CLIPTextModel
from transformers.models.clip.modeling_clip import CLIPAttention
from typing import Optional, Tuple, Union
from transformers.modeling_outputs import BaseModelOutputWithPooling
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from diffusers import (
    StableDiffusionPipeline,
    UNet2DConditionModel,
    DDIMScheduler,
)
# from transformers.models.clip.modeling_clip import _make_causal_mask, _expand_mask
_make_causal_mask = AttentionMaskConverter._make_causal_mask
_expand_mask = AttentionMaskConverter._expand_mask

from .util import perturb_tensor

def create_arc2face_pipeline(base_model_path="models/sd15-dste8-vae.safetensors", 
                             dtype=torch.float16, unet_only=False):
    unet = UNet2DConditionModel.from_pretrained(
        'models/arc2face', subfolder="arc2face", torch_dtype=dtype
    )
    if unet_only:
        return unet

    text_encoder = CLIPTextModelWrapper.from_pretrained(
        'models/arc2face', subfolder="encoder", torch_dtype=dtype
    )
    noise_scheduler = DDIMScheduler(
        num_train_timesteps=1000,
        beta_start=0.00085,
        beta_end=0.012,
        beta_schedule="scaled_linear",
        clip_sample=False,
        set_alpha_to_one=False,
        steps_offset=1,
    )    
    pipeline = StableDiffusionPipeline.from_single_file(
            base_model_path,
            text_encoder=text_encoder,
            unet=unet,
            torch_dtype=dtype,
            safety_checker=None
        )
    pipeline.scheduler = noise_scheduler
    return pipeline

# Extend CLIPAttention by using multiple k_proj and v_proj in each head.
# To avoid too much increase of computation, we don't extend q_proj.
class CLIPAttentionMKV(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config, multiplier=2):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout
        self.multiplier  = multiplier

        self.k_proj   = nn.Linear(self.embed_dim, self.embed_dim * self.multiplier)
        self.v_proj   = nn.Linear(self.embed_dim, self.embed_dim * self.multiplier)
        self.q_proj   = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

    # The (approximately) repeated token features are repeated along the last dim in tensor
    # (multiplier * num_heads * head_dim), and then reshaped to (bsz, -1, num_heads, head_dim).
    # Therefore, the "multiplier" dim is tucked into the seq_len dim, which looks like
    # [token1_emb, token1_emb, token2_emb, token2_emb, ..., tokenN_emb, tokenN_emb].
    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    # clip_attn_layer is usually self.
    def extend_weights(self, clip_attn_layer, layer_idx, multiplier, perturb_std=0.2, 
                       perturb_std_is_relative=True, perturb_keep_norm=False, verbose=False):
        ORIG_V_SHAPE    = list(clip_attn_layer.v_proj.weight.shape)
        ORIG_V_SHAPE_D0 = ORIG_V_SHAPE[0]
        ORIG_K_SHAPE    = list(clip_attn_layer.k_proj.weight.shape)
        ORIG_K_SHAPE_D0 = ORIG_K_SHAPE[0]

        self.multiplier *= multiplier

        # q_proj and out_proj are the same as the original CLIPAttention.
        self.q_proj.weight.data   = clip_attn_layer.q_proj.weight.data.clone()
        self.q_proj.bias.data     = clip_attn_layer.q_proj.bias.data.clone()
        self.out_proj.weight.data = clip_attn_layer.out_proj.weight.data.clone()
        self.out_proj.bias.data   = clip_attn_layer.out_proj.bias.data.clone()

        # bias doesn't need noise perturbation, as after the weights are noised, 
        # different copies of the weight/bias will receive different gradients, 
        # making the bias terms diverge and identifiable after training.
        self.k_proj.bias.data     = clip_attn_layer.k_proj.bias.data.repeat(multiplier)
        self.v_proj.bias.data     = clip_attn_layer.v_proj.bias.data.repeat(multiplier)

        self.k_proj.weight.data   = clip_attn_layer.k_proj.weight.data.repeat(multiplier, 1)
        self.v_proj.weight.data   = clip_attn_layer.v_proj.weight.data.repeat(multiplier, 1)

        # Correct the out_features attribute of k_proj and v_proj.
        self.k_proj.out_features = self.k_proj.weight.shape[0]
        self.v_proj.out_features = self.v_proj.weight.shape[0]

        if perturb_std > 0:
            # Adding noise to the extra copies of the weights (keep the first copy unchanged).
            self.v_proj.weight.data[ORIG_V_SHAPE_D0:] = \
                perturb_tensor(self.v_proj.weight.data[ORIG_V_SHAPE_D0:], 
                                    perturb_std, perturb_std_is_relative, perturb_keep_norm, verbose=verbose)
            if verbose:
                NEW_V_SHAPE     = list(self.v_proj.weight.shape)
                NOISED_V_SHAPE  = list(self.v_proj.weight.data[ORIG_V_SHAPE_D0:].shape)
                print(f"Layer {layer_idx}: {NOISED_V_SHAPE} in {NEW_V_SHAPE} of v_proj is added with {perturb_std} noise")

            # Adding noise to the extra copies of the weights.
            self.k_proj.weight.data[ORIG_K_SHAPE_D0:] = \
                perturb_tensor(self.k_proj.weight.data[ORIG_K_SHAPE_D0:], 
                                    perturb_std, perturb_std_is_relative, perturb_keep_norm, verbose=verbose)
            if verbose:
                NEW_K_SHAPE     = list(self.k_proj.weight.shape)
                NOISED_K_SHAPE  = list(self.k_proj.weight.data[ORIG_K_SHAPE_D0:].shape)
                print(f"Layer {layer_idx}: {NOISED_K_SHAPE} in {NEW_K_SHAPE} of k_proj is added with {perturb_std} noise")

    def squeeze_weights(self, clip_attn_layer, divisor):
        if self.multiplier % divisor != 0:
            breakpoint()
        self.multiplier //= divisor

        self.k_proj.bias.data     = clip_attn_layer.k_proj.bias.data.reshape(divisor, -1).mean(dim=0)
        self.v_proj.bias.data     = clip_attn_layer.v_proj.bias.data.reshape(divisor, -1).mean(dim=0)

        self.k_proj.weight.data   = clip_attn_layer.k_proj.weight.data.reshape(divisor, -1, self.k_proj.weight.shape[1]).mean(dim=0)
        self.v_proj.weight.data   = clip_attn_layer.v_proj.weight.data.reshape(divisor, -1, self.v_proj.weight.shape[1]).mean(dim=0)

        # Correct the out_features attribute of k_proj and v_proj.
        self.k_proj.out_features = self.k_proj.weight.shape[0]
        self.v_proj.out_features = self.v_proj.weight.shape[0]


    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        bsz, tgt_len, embed_dim = hidden_states.size()

        query_states = self.q_proj(hidden_states) * self.scale
        # For key_states and value_states, the multiplier is absorbed into the seq_len (dim 1, shape specified as -1).
        # [token0_head_emb, token0_head_emb, token1_head_emb, token1_head_emb, ..., tokenN-1_head_emb, tokenN-1_head_emb].
        key_states   = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states   = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        # src_len0 is the original src_len without the multiplier.
        src_len0 = src_len // self.multiplier
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2).contiguous())

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.size()}"
            )

        # apply the causal_attention_mask first
        if causal_attention_mask is not None:
            if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len0):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len0)}, but is"
                    f" {causal_attention_mask.size()}"
                )
            # The last dim of attn_weights corresponds to [token0, token0, token1, token1, ..., tokenN-1, tokenN-1].
            # If reshaping it as (self.multiplier, src_len0), it will become 
            # [[token0, token0, token1, token1, ..., tokenN//2], [tokenN//2+1, tokenN//2+1, ..., tokenN-1, tokenN-1]],
            # and the mask will be applied to wrong elements.
            # If reshaping it as (src_len0, self.multiplier), it will become 
            # [[token0, token1, ..., tokenN-1], [token0, token1, ..., tokenN-1]], and then
            # the mask at element i will mask all the multiplier elements at i, which is desired.
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len0, self.multiplier) + causal_attention_mask.unsqueeze(4)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len0):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len0)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len0, self.multiplier) + attention_mask.unsqueeze(4)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped
    
class CLIPTextModelWrapper(CLIPTextModel):
    # Adapted from https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/clip/modeling_clip.py#L812
    # Modified to accept precomputed token embeddings "input_token_embs" as input or calculate them from input_ids and return them.
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        input_token_embs: Optional[torch.Tensor] = None,
        hidden_state_layer_weights: Optional[torch.Tensor] = None,
        return_token_embs: Optional[bool] = False,
    ) -> Union[Tuple, torch.Tensor, BaseModelOutputWithPooling]:

        if return_token_embs:
            return self.text_model.embeddings.token_embedding(input_ids)
    
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
    
        output_attentions = output_attentions if output_attentions is not None else self.text_model.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.text_model.config.output_hidden_states
        )
        if hidden_state_layer_weights is not None:
            output_hidden_states = True
        return_dict = return_dict if return_dict is not None else self.text_model.config.use_return_dict
    
        if input_ids is None:
            raise ValueError("You have to specify input_ids")
    
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_shape[-1])
    
        hidden_states = self.text_model.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=input_token_embs)
    
        # CLIP's text model uses causal mask, prepare it here.
        # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
        causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device)
        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
    
        encoder_outputs = self.text_model.encoder(
            inputs_embeds=hidden_states,
            attention_mask=attention_mask,
            causal_attention_mask=causal_attention_mask,
            output_attentions=output_attentions,
            # output_hidden_states is False by default, and only True if hidden_state_layer_weights is provided.
            output_hidden_states=output_hidden_states,      
            return_dict=return_dict,
        )
    
        # If output_hidden_states is True, then encoder_outputs[0] is last_hidden_state [1, 22, 768].
        # encoder_outputs[1] is hidden_states, which is a tuple of 13 hidden states, each being [1, 22, 768].
        # encoder_outputs[0] == encoder_outputs[1][12].
        if hidden_state_layer_weights is None:
            last_hidden_state = encoder_outputs[0]
        else:
            num_hidden_state_layers = len(hidden_state_layer_weights)
            last_hidden_states = encoder_outputs[1][-num_hidden_state_layers:]
            hidden_state_layer_weights = hidden_state_layer_weights.to(last_hidden_states[0].dtype)
            # Normalize the weights of to sum to 1 across layers.
            # hidden_state_layer_weights: [3, 1] or [3, 768].
            hidden_state_layer_weights = hidden_state_layer_weights / hidden_state_layer_weights.sum(dim=0, keepdim=True)
            # [3, 1/768] -> [3, 1, 1, 1/768]
            hidden_state_layer_weights = hidden_state_layer_weights.unsqueeze(1).unsqueeze(1)
            # A weighted sum of last_hidden_states.
            # [3, 1, 22, 768] * [3, 1, 1, 1/768] -> [3, 1, 22, 768] -> [1, 22, 768]
            last_hidden_state = (torch.stack(last_hidden_states, dim=0) * hidden_state_layer_weights).sum(dim=0)
            
        last_hidden_state = self.text_model.final_layer_norm(last_hidden_state)

        # self.text_model.eos_token_id == 2 is True.
        if self.text_model.eos_token_id == 2:
            # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
            # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
            # ------------------------------------------------------------
            # text_embeds.shape = [batch_size, sequence_length, transformer.width]
            # take features from the eot embedding (eot_token is the highest number in each sequence)
            # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
            pooled_output = last_hidden_state[
                torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
                input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
            ]
        else:
            # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
            pooled_output = last_hidden_state[
                torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
                # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
                (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.text_model.eos_token_id)
                .int()
                .argmax(dim=-1),
            ]
    
        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]
    
        return BaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )
    
    # Applied to all attention layers in the encoder, if the corresponding multiplier is not 1.
    # The layer indexed by end_layer_idx is not included.
    # If both layer indices are -1, then apply to all layers (0-11).
    def extend_clip_attention_MKV_multiplier(self, prompt2token_proj_attention_multipliers, perturb_std=0.1):
        num_extended_layers = 0

        for layer_idx, layer in enumerate(self.text_model.encoder.layers):
            multiplier = prompt2token_proj_attention_multipliers[layer_idx]
            if multiplier == 1:
                continue
            # This shouldn't happen, unless self_attn has already been extended as CLIPAttentionMKV.
            if not isinstance(layer.self_attn, (CLIPAttention, CLIPAttentionMKV)):
                breakpoint()
            old_attn_layer = layer.self_attn
            if not isinstance(old_attn_layer, CLIPAttentionMKV):
                layer.self_attn = CLIPAttentionMKV(old_attn_layer.config, 1)
            # Extends the v_proj and k_proj weights in the self_attn layer.
            layer.self_attn.extend_weights(old_attn_layer, layer_idx, multiplier, perturb_std, verbose=True)
            num_extended_layers += 1
    
        return num_extended_layers

    # Applied to layers [begin_layer_idx, end_layer_idx) in the encoder.
    # The layer indexed by end_layer_idx is not included.
    # If both layer indices are -1, then apply to all layers (0-11).
    def squeeze_clip_attention_MKV_divisor(self, prompt2token_proj_attention_divisors):
        num_squeezed_layers = 0

        for layer_idx, layer in enumerate(self.text_model.encoder.layers):
            divisor = prompt2token_proj_attention_divisors[layer_idx]
            if divisor == 1:
                continue
            # This shouldn't happen, unless self_attn has already been extended as CLIPAttentionMKV.
            if not isinstance(layer.self_attn, (CLIPAttention, CLIPAttentionMKV)):
                breakpoint()
            old_attn_layer = layer.self_attn
            if not isinstance(old_attn_layer, CLIPAttentionMKV):
                layer.self_attn = CLIPAttentionMKV(old_attn_layer.config, 1)
            # Squeeze the k_proj and v_proj  weights in the self_attn layer.
            layer.self_attn.squeeze_weights(old_attn_layer, divisor)
            num_squeezed_layers += 1
    
        return num_squeezed_layers