Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,130 Bytes
02cc20b ad88a0b 02cc20b a29cf91 02cc20b bb9ba55 02cc20b ad88a0b 02cc20b f0b9ada a29cf91 f0b9ada bb9ba55 f0b9ada 02cc20b ad88a0b 02cc20b a29cf91 ad88a0b a29cf91 ad88a0b a29cf91 02cc20b bb9ba55 a29cf91 02cc20b a29cf91 02cc20b b0b5a77 ad88a0b b0b5a77 02cc20b a29cf91 02cc20b 13d8b07 bb9ba55 a29cf91 02cc20b 798f7db a29cf91 bb9ba55 f0b9ada ad88a0b a29cf91 abaeb15 02cc20b f0b9ada ad88a0b 02cc20b ad88a0b a29cf91 ad88a0b 02cc20b 13d8b07 ad88a0b 13d8b07 f0b9ada ad88a0b 02cc20b ad88a0b f0b9ada ad88a0b 02cc20b ad88a0b 02cc20b bb9ba55 02cc20b bb9ba55 02cc20b ad88a0b 4d30abe f0b9ada 4d30abe b0b5a77 4d30abe 02cc20b 973f661 02cc20b bb9ba55 02cc20b ad88a0b 02cc20b ad88a0b f0b9ada ad88a0b f0b9ada ad88a0b 02cc20b 973f661 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b 973f661 02cc20b a29cf91 2a110ec f0b9ada a29cf91 ad88a0b f0b9ada ad88a0b f0b9ada bb9ba55 ad88a0b f0b9ada ad88a0b f0b9ada 61fbdeb ad88a0b 02cc20b ad88a0b 02cc20b 54eab22 ad88a0b 02cc20b 973f661 02cc20b 54eab22 02cc20b 973f661 54eab22 02cc20b ad88a0b a29cf91 ad88a0b a29cf91 ad88a0b a29cf91 61fbdeb ad88a0b a29cf91 ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 02cc20b ad88a0b 54eab22 02cc20b bb9ba55 02cc20b bb9ba55 02cc20b a29cf91 bb9ba55 f0b9ada ad88a0b 02cc20b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import gradio as gr
import spaces
css = '''
.gradio-container {width: 85% !important}
'''
from animatediff.utils.util import save_videos_grid
from adaface.adaface_wrapper import AdaFaceWrapper
import random
from infer import load_model, model_style_type2base_model_path
MAX_SEED=10000
import uuid
from insightface.app import FaceAnalysis
import os
import os
import cv2
from diffusers.utils import load_image
from insightface.utils import face_align
from PIL import Image
import torch
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--adaface_encoder_types", type=str, nargs="+", default=["consistentID", "arc2face"],
choices=["arc2face", "consistentID"], help="Type(s) of the ID2Ada prompt encoders")
parser.add_argument('--adaface_ckpt_path', type=str,
default='models/adaface/VGGface2_HQ_masks2024-10-08T14-42-05_zero3-ada-30000.pt')
parser.add_argument('--model_style_type', type=str, default='realistic',
choices=["realistic", "anime", "photorealistic"], help="Type of the base model")
parser.add_argument("--guidance_scale", type=float, default=8.0,
help="The guidance scale for the diffusion model. Default: 8.0")
parser.add_argument("--do_neg_id_prompt_weight", type=float, default=0,
help="The weight of added ID prompt embeddings into the negative prompt. Default: 0, disabled.")
parser.add_argument('--gpu', type=int, default=None)
parser.add_argument('--ip', type=str, default="0.0.0.0")
args = parser.parse_args()
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
# model = load_model()
# This FaceAnalysis is just to crop the face areas from the uploaded images,
# and is independent of the adaface FaceAnalysis apps.
app = FaceAnalysis(name="buffalo_l", root='models/insightface', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(320, 320))
device = "cuda" if args.gpu is None else f"cuda:{args.gpu}"
global adaface, id_animator
base_model_path = model_style_type2base_model_path[args.model_style_type]
id_animator = load_model(model_style_type=args.model_style_type, device=device)
adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=base_model_path,
adaface_encoder_types=args.adaface_encoder_types,
adaface_ckpt_paths=[args.adaface_ckpt_path], device=device)
basedir = os.getcwd()
savedir = os.path.join(basedir,'samples')
os.makedirs(savedir, exist_ok=True)
#print(f"### Cleaning cached examples ...")
#os.system(f"rm -rf gradio_cached_examples/")
def swap_to_gallery(images):
# Update uploaded_files_gallery, show files, hide clear_button_column
# Or:
# Update uploaded_init_img_gallery, show init_img_files, hide init_clear_button_column
return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(value=images, visible=False)
def remove_back_to_files():
# Hide uploaded_files_gallery, show clear_button_column, hide files, reset init_img_selected_idx
# Or:
# Hide uploaded_init_img_gallery, hide init_clear_button_column, show init_img_files, reset init_img_selected_idx
return gr.update(visible=False), gr.update(visible=False), gr.update(value=None, visible=True), gr.update(value="0")
def get_clicked_image(data: gr.SelectData):
return data.index
@spaces.GPU
def gen_init_images(uploaded_image_paths, prompt,
guidance_scale, do_neg_id_prompt_weight, out_image_count=3):
global adaface, id_animator
if uploaded_image_paths is None:
print("No image uploaded")
return None, None, None
# uploaded_image_paths is a list of tuples:
# [('/tmp/gradio/249981e66a7c665aaaf1c7eaeb24949af4366c88/jensen huang.jpg', None)]
# Extract the file paths.
uploaded_image_paths = [path[0] for path in uploaded_image_paths]
adaface_subj_embs = \
adaface.prepare_adaface_embeddings(image_paths=uploaded_image_paths, face_id_embs=None,
update_text_encoder=True)
if adaface_subj_embs is None:
raise gr.Error(f"Failed to detect any faces! Please try with other images")
# Generate two images each time for the user to select from.
noise = torch.randn(out_image_count, 3, 512, 512)
enhance_face = True
if enhance_face and "face portrait" not in prompt:
if "portrait" in prompt:
# Enhance the face features by replacing "portrait" with "face portrait".
prompt = prompt.replace("portrait", "face portrait")
else:
prompt = "face portrait, " + prompt
# samples: A list of PIL Image instances.
with torch.no_grad():
samples = adaface(noise, prompt, placeholder_tokens_pos='append',
guidance_scale=guidance_scale,
do_neg_id_prompt_weight=do_neg_id_prompt_weight,
out_image_count=out_image_count, verbose=True)
face_paths = []
for sample in samples:
random_name = str(uuid.uuid4())
face_path = os.path.join(savedir, f"{random_name}.jpg")
face_paths.append(face_path)
sample.save(face_path)
print(f"Generated init image: {face_path}")
# Update uploaded_init_img_gallery, update and hide init_img_files, hide init_clear_button_column
return gr.update(value=face_paths, visible=True), gr.update(value=face_paths, visible=False), gr.update(visible=True)
@spaces.GPU(duration=90)
def generate_video(image_container, uploaded_image_paths, init_img_file_paths, init_img_selected_idx,
init_image_strength, init_image_final_weight,
prompt, negative_prompt, num_steps, video_length, guidance_scale, do_neg_id_prompt_weight,
seed, attn_scale, image_embed_cfg_begin_scale, image_embed_cfg_end_scale,
is_adaface_enabled, adaface_ckpt_path, adaface_power_scale,
id_animator_anneal_steps, progress=gr.Progress(track_tqdm=True)):
global adaface, id_animator
if prompt is None:
prompt = ""
prompt = prompt + " 8k uhd, high quality"
if " shot" not in prompt:
prompt = prompt + ", medium shot"
prompt_img_lists=[]
for path in uploaded_image_paths:
img = cv2.imread(path)
faces = app.get(img)
face_roi = face_align.norm_crop(img, faces[0]['kps'], 112)
random_name = str(uuid.uuid4())
face_path = os.path.join(savedir, f"{random_name}.jpg")
cv2.imwrite(face_path, face_roi)
# prompt_img_lists is a list of PIL images.
prompt_img_lists.append(load_image(face_path).resize((224,224)))
if adaface is None or not is_adaface_enabled:
adaface_prompt_embeds, negative_prompt_embeds = None, None
image_embed_cfg_scales = (1, 1)
else:
if (adaface_ckpt_path is not None and adaface_ckpt_path.strip() != '') \
and (adaface_ckpt_path != args.adaface_ckpt_path):
args.adaface_ckpt_path = adaface_ckpt_path
# Reload the adaface model weights.
adaface.id2ada_prompt_encoder.load_adaface_ckpt(adaface_ckpt_path)
with torch.no_grad():
adaface_subj_embs = \
adaface.prepare_adaface_embeddings(image_paths=uploaded_image_paths, face_id_embs=None,
update_text_encoder=True)
# adaface_prompt_embeds: [1, 77, 768].
adaface_prompt_embeds, negative_prompt_embeds, _, _ = \
adaface.encode_prompt(prompt, placeholder_tokens_pos='append',
do_neg_id_prompt_weight=do_neg_id_prompt_weight,
verbose=True)
image_embed_cfg_scales = (image_embed_cfg_begin_scale, image_embed_cfg_end_scale)
# init_img_file_paths is a list of image paths. If not chose, init_img_file_paths is None.
if init_img_file_paths is not None:
init_img_selected_idx = int(init_img_selected_idx)
init_img_file_path = init_img_file_paths[init_img_selected_idx]
init_image = cv2.imread(init_img_file_path)
init_image = cv2.resize(init_image, (512, 512))
init_image = Image.fromarray(cv2.cvtColor(init_image, cv2.COLOR_BGR2RGB))
print(f"init_image: {init_img_file_path}")
else:
init_image = None
sample = id_animator.generate(prompt_img_lists,
init_image = init_image,
init_image_strength = (init_image_strength, init_image_final_weight),
prompt = prompt,
negative_prompt = negative_prompt,
adaface_prompt_embeds = (adaface_prompt_embeds, negative_prompt_embeds),
# adaface_power_scale is not so useful, and when it's set >= 2, weird artifacts appear.
# Here it's limited to 0.7~1.3.
adaface_power_scale = adaface_power_scale,
num_inference_steps = num_steps,
id_animator_anneal_steps = id_animator_anneal_steps,
seed = seed,
guidance_scale = guidance_scale,
width = 512,
height = 512,
video_length = video_length,
attn_scale = attn_scale,
image_embed_cfg_scales = image_embed_cfg_scales,
)
save_sample_path = os.path.join(savedir, f"{random_name}.mp4")
save_videos_grid(sample, save_sample_path)
return save_sample_path
def check_prompt_and_model_type(prompt, model_style_type):
global adaface, id_animator
model_style_type = model_style_type.lower()
base_model_path = model_style_type2base_model_path[model_style_type]
# If the base model type is changed, reload the model.
if model_style_type != args.model_style_type:
id_animator = load_model(model_style_type=model_style_type, device=device)
adaface = AdaFaceWrapper(pipeline_name="text2img", base_model_path=base_model_path,
adaface_encoder_types=args.adaface_encoder_types,
adaface_ckpt_paths=[args.adaface_ckpt_path], device=device)
# Update base model type.
args.model_style_type = model_style_type
if not prompt:
raise gr.Error("Prompt cannot be blank")
with gr.Blocks(css=css, theme=gr.themes.Origin()) as demo:
gr.Markdown(
"""
# AdaFace-Animate: Zero-Shot Subject-Driven Video Generation for Humans
"""
)
gr.Markdown(
"""
<b>Official demo</b> for our working paper <b>AdaFace: A Versatile Face Encoder for Zero-Shot Diffusion Model Personalization</b>.<br>
❗️**Tips**❗️
- You can upload one or more subject images for generating ID-specific video.
- If the face dominates the video frames, try increasing the Weight of ID prompt in the negative prompt, at the cost of slight drop of ID authenticity.
- If the face loses focu, try increasing the guidance scale. At the same time, increase the Weight of ID prompt in the negative prompt proportionally.
- If the motion is weird, e.g., running, try increasing the number of sampling steps.
- Usage explanations and demos: [Readme](https://huggingface.co/spaces/adaface-neurips/adaface-animate/blob/main/README2.md).
- AdaFace Text-to-Image: <a href="https://huggingface.co/spaces/adaface-neurips/adaface" style="display: inline-flex; align-items: center;">
AdaFace
<img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow" alt="Hugging Face Spaces" style="margin-left: 5px;">
</a>
**TODO:**
- ControlNet integration.
"""
)
with gr.Row():
with gr.Column():
files = gr.File(
label="Drag / Select 1 or more photos of a person's face",
file_types=["image"],
file_count="multiple"
)
image_container = gr.Image(label="image container", sources="upload", type="numpy", height=256, visible=False)
uploaded_files_gallery = gr.Gallery(label="Subject images", visible=False, columns=3, rows=2, height=300)
with gr.Column(visible=False) as clear_button_column:
remove_and_reupload = gr.ClearButton(value="Remove and upload subject images", components=files, size="sm")
init_img_files = gr.File(
label="[Optional] Generate 3 images and select 1 image",
file_types=["image"],
file_count="multiple"
)
init_img_container = gr.Image(label="init image container", sources="upload", type="numpy", height=256, visible=False)
# Although there's only one image, we still use columns=3, to scale down the image size.
# Otherwise it will occupy the full width, and the gallery won't show the whole image.
uploaded_init_img_gallery = gr.Gallery(label="Init image", visible=False, columns=3, rows=1, height=200)
# placeholder is just hint, not the real value. So we use "value='0'" instead of "placeholder='0'".
init_img_selected_idx = gr.Textbox(label="Selected init image index", value="0", visible=False)
with gr.Column(visible=True) as init_gen_button_column:
gen_init = gr.Button(value="Generate 3 new init images")
with gr.Column(visible=False) as init_clear_button_column:
remove_init_and_reupload = gr.ClearButton(value="Upload an old init image", components=init_img_files, size="sm")
prompt = gr.Dropdown(label="Prompt",
info="Try something like 'man/woman walking on the beach'.",
value="((best quality)), ((masterpiece)), ((realistic)), highlighted hair, futuristic silver armor suit, confident stance, high-resolution, living room, smiling, head tilted, perfect smooth skin",
allow_custom_value=True,
filterable=False,
choices=[
"((best quality)), ((masterpiece)), ((realistic)), highlighted hair, futuristic silver armor suit, confident stance, high-resolution, living room, smiling, head tilted, perfect smooth skin",
"walking on the beach, sunset, orange sky, eye level shot",
"in a white apron and chef hat, garnishing a gourmet dish, full body view, long shot",
"dancing pose among folks in a park, waving hands",
"in iron man costume flying pose, the sky ablaze with hues of orange and purple, full body view, long shot",
"jedi wielding a lightsaber, star wars, full body view, eye level shot",
"playing guitar on a boat, ocean waves",
"with a passion for reading, curled up with a book in a cozy nook near a window",
#"running pose in a park, full body view, eye level shot",
"in superman costume flying pose, the sky ablaze with hues of orange and purple, full body view, long shot"
])
init_image_strength = gr.Slider(
label="Init Image Strength",
info="How much the init image should influence each frame. 0: no influence (scenes are more dynamic), 3: strongest influence (scenes are more static).",
minimum=0,
maximum=1.5,
step=0.25,
value=1,
)
init_image_final_weight = gr.Slider(
label="Final Weight of the Init Image",
info="How much the init image should influence the end of the video",
minimum=0,
maximum=0.25,
step=0.025,
value=0.1,
)
model_style_type = gr.Dropdown(
label="Base Model Style Type",
info="Switching the base model type will take 10~20 seconds to reload the model",
value=args.model_style_type.capitalize(),
choices=["Realistic", "Anime"], #"Photorealistic"],
allow_custom_value=False,
filterable=False,
)
guidance_scale = gr.Slider(
label="Guidance scale",
info="If > 10, there may be artifacts.",
minimum=1.0,
maximum=12.0,
step=1,
value=args.guidance_scale,
)
do_neg_id_prompt_weight = gr.Slider(
label="Weight of ID prompt in the negative prompt",
minimum=0.0,
maximum=0.9,
step=0.1,
value=args.do_neg_id_prompt_weight,
visible=False
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=985,
)
randomize_seed = gr.Checkbox(
label="Randomize seed",
value=True,
info="Uncheck for reproducible results")
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="low quality",
value="(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime), text, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, bare breasts, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, long neck, UnrealisticDream",
)
num_steps = gr.Slider(
label="Number of sampling steps. More steps for better composition, but longer time.",
minimum=30,
maximum=70,
step=10,
value=40,
)
submit = gr.Button("Generate Video")
with gr.Accordion(open=False, label="Advanced Options"):
video_length = gr.Slider(
label="video_length",
info="Do not change; any values other than 16 will mess up the output video",
minimum=16,
maximum=21,
step=1,
value=16,
interactive=False,
visible=False,
)
is_adaface_enabled = gr.Checkbox(label="Enable AdaFace",
info="Enable AdaFace for better face details. If unchecked, it falls back to ID-Animator (https://huggingface.co/spaces/ID-Animator/ID-Animator).",
value=True)
adaface_ckpt_path = gr.Textbox(
label="AdaFace checkpoint path",
placeholder=args.adaface_ckpt_path,
value=args.adaface_ckpt_path,
)
adaface_power_scale = gr.Slider(
label="AdaFace Embedding Power Scale",
info="Increase this scale slightly only if the face is defocused or the face details are not clear",
minimum=0.8,
maximum=1.2,
step=0.1,
value=1,
)
image_embed_cfg_begin_scale = gr.Slider(
label="ID-Animator Image Embedding Initial Scale",
info="The scale of the ID-Animator image embedding (influencing coarse facial features and poses)",
minimum=0.6,
maximum=1.5,
step=0.1,
value=1.0,
)
image_embed_cfg_end_scale = gr.Slider(
label="ID-Animator Image Embedding Final Scale",
info="The scale of the ID-Animator image embedding (influencing coarse facial features and poses)",
minimum=0.3,
maximum=1.5,
step=0.1,
value=0.5,
)
id_animator_anneal_steps = gr.Slider(
label="ID-Animator Scale Anneal Steps",
minimum=0,
maximum=40,
step=1,
value=20,
visible=True,
)
attn_scale = gr.Slider(
label="ID-Animator Attention Processor Scale",
info="The scale of the ID embeddings on the attention (the higher, the more focus on the face, less on the background)" ,
minimum=0,
maximum=2,
step=0.1,
value=1,
)
with gr.Column():
result_video = gr.Video(label="Generated Animation", interactive=False)
files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files_gallery, clear_button_column, files])
remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files_gallery, clear_button_column, files, init_img_selected_idx])
init_img_files.upload(fn=swap_to_gallery, inputs=init_img_files,
outputs=[uploaded_init_img_gallery, init_clear_button_column, init_img_files])
remove_init_and_reupload.click(fn=remove_back_to_files,
outputs=[uploaded_init_img_gallery, init_clear_button_column,
init_img_files, init_img_selected_idx])
gen_init.click(fn=gen_init_images, inputs=[uploaded_files_gallery, prompt,
guidance_scale, do_neg_id_prompt_weight],
outputs=[uploaded_init_img_gallery, init_img_files, init_clear_button_column])
uploaded_init_img_gallery.select(fn=get_clicked_image, inputs=None, outputs=init_img_selected_idx)
submit.click(fn=check_prompt_and_model_type,
inputs=[prompt, model_style_type],outputs=None).success(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate_video,
inputs=[image_container, files,
init_img_files, init_img_selected_idx, init_image_strength, init_image_final_weight,
prompt, negative_prompt, num_steps, video_length, guidance_scale, do_neg_id_prompt_weight,
seed, attn_scale, image_embed_cfg_begin_scale, image_embed_cfg_end_scale,
is_adaface_enabled, adaface_ckpt_path, adaface_power_scale, id_animator_anneal_steps],
outputs=[result_video]
)
demo.launch(share=True, server_name=args.ip, ssl_verify=False)
|