adaface-animate / adaface /adaface-infer.py
adaface-neurips
re-init
02cc20b
raw
history blame
6.63 kB
from adaface.adaface_wrapper import AdaFaceWrapper
import torch
#import torch.nn.functional as F
from PIL import Image
import numpy as np
import os, argparse, glob, re
def save_images(images, num_images_per_row, subject_name, prompt, noise_level, save_dir = "samples-ada"):
if num_images_per_row > len(images):
num_images_per_row = len(images)
os.makedirs(save_dir, exist_ok=True)
num_columns = int(np.ceil(len(images) / num_images_per_row))
# Save 4 images as a grid image in save_dir
grid_image = Image.new('RGB', (512 * num_images_per_row, 512 * num_columns))
for i, image in enumerate(images):
image = image.resize((512, 512))
grid_image.paste(image, (512 * (i % num_images_per_row), 512 * (i // num_images_per_row)))
prompt_sig = prompt.replace(" ", "_").replace(",", "_")
grid_filepath = os.path.join(save_dir, f"{subject_name}-{prompt_sig}-noise{noise_level:.02f}.png")
if os.path.exists(grid_filepath):
grid_count = 2
grid_filepath = os.path.join(save_dir, f'{subject_name}-{prompt_sig}-noise{noise_level:.02f}-{grid_count}.jpg')
while os.path.exists(grid_filepath):
grid_count += 1
grid_filepath = os.path.join(save_dir, f'{subject_name}-{prompt_sig}-noise{noise_level:.02f}-{grid_count}.jpg')
grid_image.save(grid_filepath)
print(f"Saved to {grid_filepath}")
def seed_everything(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PL_GLOBAL_SEED"] = str(seed)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model_path", type=str, default='runwayml/stable-diffusion-v1-5',
help="Type of checkpoints to use (default: SD 1.5)")
parser.add_argument("--embman_ckpt", type=str, required=True,
help="Path to the checkpoint of the embedding manager")
parser.add_argument("--subject", type=str, required=True)
parser.add_argument("--example_image_count", type=int, default=-1, help="Number of example images to use")
parser.add_argument("--out_image_count", type=int, default=4, help="Number of images to generate")
parser.add_argument("--prompt", type=str, default="a woman z in superman costume")
parser.add_argument("--noise", dest='noise_level', type=float, default=0)
parser.add_argument("--randface", action="store_true")
parser.add_argument("--scale", dest='guidance_scale', type=float, default=4,
help="Guidance scale for the diffusion model")
parser.add_argument("--id_cfg_scale", type=float, default=1,
help="CFG scale when generating the identity embeddings")
parser.add_argument("--subject_string",
type=str, default="z",
help="Subject placeholder string used in prompts to denote the concept.")
parser.add_argument("--num_vectors", type=int, default=16,
help="Number of vectors used to represent the subject.")
parser.add_argument("--num_images_per_row", type=int, default=4,
help="Number of images to display in a row in the output grid image.")
parser.add_argument("--num_inference_steps", type=int, default=50,
help="Number of DDIM inference steps")
parser.add_argument("--device", type=str, default="cuda", help="Device to run the model on")
parser.add_argument("--seed", type=int, default=42,
help="the seed (for reproducible sampling). Set to -1 to disable.")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
if args.seed != -1:
seed_everything(args.seed)
if re.match(r"^\d+$", args.device):
args.device = f"cuda:{args.device}"
print(f"Using device {args.device}")
adaface = AdaFaceWrapper("text2img", args.base_model_path, args.embman_ckpt, args.device,
args.subject_string, args.num_vectors, args.num_inference_steps)
if not args.randface:
image_folder = args.subject
if image_folder.endswith("/"):
image_folder = image_folder[:-1]
if os.path.isfile(image_folder):
# Get the second to the last part of the path
subject_name = os.path.basename(os.path.dirname(image_folder))
image_paths = [image_folder]
else:
subject_name = os.path.basename(image_folder)
image_types = ["*.jpg", "*.png", "*.jpeg"]
alltype_image_paths = []
for image_type in image_types:
# glob returns the full path.
image_paths = glob.glob(os.path.join(image_folder, image_type))
if len(image_paths) > 0:
alltype_image_paths.extend(image_paths)
# Filter out images of "*_mask.png"
alltype_image_paths = [image_path for image_path in alltype_image_paths if "_mask.png" not in image_path]
# image_paths contain at most args.example_image_count full image paths.
if args.example_image_count > 0:
image_paths = alltype_image_paths[:args.example_image_count]
else:
image_paths = alltype_image_paths
else:
subject_name = None
image_paths = None
image_folder = None
subject_name = "randface-" + str(torch.seed()) if args.randface else subject_name
rand_face_embs = torch.randn(1, 512)
pre_face_embs = rand_face_embs if args.randface else None
noise = torch.randn(args.out_image_count, 4, 64, 64).cuda()
# args.noise_level: the *relative* std of the noise added to the face embeddings.
# A noise level of 0.08 could change gender, but 0.06 is usually safe.
# adaface_subj_embs is not used. It is generated for the purpose of updating the text encoder (within this function call).
adaface_subj_embs = adaface.generate_adaface_embeddings(image_paths, image_folder, pre_face_embs, args.randface,
out_id_embs_scale=args.id_cfg_scale, noise_level=args.noise_level,
update_text_encoder=True)
images = adaface(noise, args.prompt, args.guidance_scale, args.out_image_count, verbose=True)
save_images(images, args.num_images_per_row, subject_name, f"guide{args.guidance_scale}", args.noise_level)