Spaces:
Running
on
Zero
Running
on
Zero
from adaface.adaface_wrapper import AdaFaceWrapper | |
import torch | |
#import torch.nn.functional as F | |
from PIL import Image | |
import numpy as np | |
import os, argparse, glob, re | |
def save_images(images, num_images_per_row, subject_name, prompt, noise_level, save_dir = "samples-ada"): | |
if num_images_per_row > len(images): | |
num_images_per_row = len(images) | |
os.makedirs(save_dir, exist_ok=True) | |
num_columns = int(np.ceil(len(images) / num_images_per_row)) | |
# Save 4 images as a grid image in save_dir | |
grid_image = Image.new('RGB', (512 * num_images_per_row, 512 * num_columns)) | |
for i, image in enumerate(images): | |
image = image.resize((512, 512)) | |
grid_image.paste(image, (512 * (i % num_images_per_row), 512 * (i // num_images_per_row))) | |
prompt_sig = prompt.replace(" ", "_").replace(",", "_") | |
grid_filepath = os.path.join(save_dir, f"{subject_name}-{prompt_sig}-noise{noise_level:.02f}.png") | |
if os.path.exists(grid_filepath): | |
grid_count = 2 | |
grid_filepath = os.path.join(save_dir, f'{subject_name}-{prompt_sig}-noise{noise_level:.02f}-{grid_count}.jpg') | |
while os.path.exists(grid_filepath): | |
grid_count += 1 | |
grid_filepath = os.path.join(save_dir, f'{subject_name}-{prompt_sig}-noise{noise_level:.02f}-{grid_count}.jpg') | |
grid_image.save(grid_filepath) | |
print(f"Saved to {grid_filepath}") | |
def seed_everything(seed): | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
os.environ["PL_GLOBAL_SEED"] = str(seed) | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--base_model_path", type=str, default='runwayml/stable-diffusion-v1-5', | |
help="Type of checkpoints to use (default: SD 1.5)") | |
parser.add_argument("--embman_ckpt", type=str, required=True, | |
help="Path to the checkpoint of the embedding manager") | |
parser.add_argument("--subject", type=str, required=True) | |
parser.add_argument("--example_image_count", type=int, default=-1, help="Number of example images to use") | |
parser.add_argument("--out_image_count", type=int, default=4, help="Number of images to generate") | |
parser.add_argument("--prompt", type=str, default="a woman z in superman costume") | |
parser.add_argument("--noise", dest='noise_level', type=float, default=0) | |
parser.add_argument("--randface", action="store_true") | |
parser.add_argument("--scale", dest='guidance_scale', type=float, default=4, | |
help="Guidance scale for the diffusion model") | |
parser.add_argument("--id_cfg_scale", type=float, default=1, | |
help="CFG scale when generating the identity embeddings") | |
parser.add_argument("--subject_string", | |
type=str, default="z", | |
help="Subject placeholder string used in prompts to denote the concept.") | |
parser.add_argument("--num_vectors", type=int, default=16, | |
help="Number of vectors used to represent the subject.") | |
parser.add_argument("--num_images_per_row", type=int, default=4, | |
help="Number of images to display in a row in the output grid image.") | |
parser.add_argument("--num_inference_steps", type=int, default=50, | |
help="Number of DDIM inference steps") | |
parser.add_argument("--device", type=str, default="cuda", help="Device to run the model on") | |
parser.add_argument("--seed", type=int, default=42, | |
help="the seed (for reproducible sampling). Set to -1 to disable.") | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
args = parse_args() | |
if args.seed != -1: | |
seed_everything(args.seed) | |
if re.match(r"^\d+$", args.device): | |
args.device = f"cuda:{args.device}" | |
print(f"Using device {args.device}") | |
adaface = AdaFaceWrapper("text2img", args.base_model_path, args.embman_ckpt, args.device, | |
args.subject_string, args.num_vectors, args.num_inference_steps) | |
if not args.randface: | |
image_folder = args.subject | |
if image_folder.endswith("/"): | |
image_folder = image_folder[:-1] | |
if os.path.isfile(image_folder): | |
# Get the second to the last part of the path | |
subject_name = os.path.basename(os.path.dirname(image_folder)) | |
image_paths = [image_folder] | |
else: | |
subject_name = os.path.basename(image_folder) | |
image_types = ["*.jpg", "*.png", "*.jpeg"] | |
alltype_image_paths = [] | |
for image_type in image_types: | |
# glob returns the full path. | |
image_paths = glob.glob(os.path.join(image_folder, image_type)) | |
if len(image_paths) > 0: | |
alltype_image_paths.extend(image_paths) | |
# Filter out images of "*_mask.png" | |
alltype_image_paths = [image_path for image_path in alltype_image_paths if "_mask.png" not in image_path] | |
# image_paths contain at most args.example_image_count full image paths. | |
if args.example_image_count > 0: | |
image_paths = alltype_image_paths[:args.example_image_count] | |
else: | |
image_paths = alltype_image_paths | |
else: | |
subject_name = None | |
image_paths = None | |
image_folder = None | |
subject_name = "randface-" + str(torch.seed()) if args.randface else subject_name | |
rand_face_embs = torch.randn(1, 512) | |
pre_face_embs = rand_face_embs if args.randface else None | |
noise = torch.randn(args.out_image_count, 4, 64, 64).cuda() | |
# args.noise_level: the *relative* std of the noise added to the face embeddings. | |
# A noise level of 0.08 could change gender, but 0.06 is usually safe. | |
# adaface_subj_embs is not used. It is generated for the purpose of updating the text encoder (within this function call). | |
adaface_subj_embs = adaface.generate_adaface_embeddings(image_paths, image_folder, pre_face_embs, args.randface, | |
out_id_embs_scale=args.id_cfg_scale, noise_level=args.noise_level, | |
update_text_encoder=True) | |
images = adaface(noise, args.prompt, args.guidance_scale, args.out_image_count, verbose=True) | |
save_images(images, args.num_images_per_row, subject_name, f"guide{args.guidance_scale}", args.noise_level) | |