adaface-animate / adaface /adaface_infer.py
adaface-neurips
Integrate do_neg_id_prompt_weight, fix bugs, various refinements
f0b9ada
raw
history blame
8.32 kB
from adaface.adaface_wrapper import AdaFaceWrapper
import torch
#import torch.nn.functional as F
from PIL import Image
import numpy as np
import os, argparse, glob, re
def save_images(images, num_images_per_row, subject_name, prompt, perturb_std, save_dir = "samples-ada"):
if num_images_per_row > len(images):
num_images_per_row = len(images)
os.makedirs(save_dir, exist_ok=True)
num_columns = int(np.ceil(len(images) / num_images_per_row))
# Save 4 images as a grid image in save_dir
grid_image = Image.new('RGB', (512 * num_images_per_row, 512 * num_columns))
for i, image in enumerate(images):
image = image.resize((512, 512))
grid_image.paste(image, (512 * (i % num_images_per_row), 512 * (i // num_images_per_row)))
prompt_sig = prompt.replace(" ", "_").replace(",", "_")
grid_filepath = os.path.join(save_dir, f"{subject_name}-{prompt_sig}-perturb{perturb_std:.02f}.png")
if os.path.exists(grid_filepath):
grid_count = 2
grid_filepath = os.path.join(save_dir, f'{subject_name}-{prompt_sig}-perturb{perturb_std:.02f}-{grid_count}.png')
while os.path.exists(grid_filepath):
grid_count += 1
grid_filepath = os.path.join(save_dir, f'{subject_name}-{prompt_sig}-perturb{perturb_std:.02f}-{grid_count}.png')
grid_image.save(grid_filepath)
print(f"Saved to {grid_filepath}")
def seed_everything(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PL_GLOBAL_SEED"] = str(seed)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--pipeline", type=str, default="text2img",
choices=["text2img", "img2img", "text2img3", "flux"],
help="Type of pipeline to use (default: txt2img)")
parser.add_argument("--base_model_path", type=str, default=None,
help="Type of checkpoints to use (default: None, using the official model)")
parser.add_argument('--adaface_ckpt_paths', type=str, nargs="+",
default=['models/adaface/subjects-celebrity2024-05-16T17-22-46_zero3-ada-30000.pt'])
parser.add_argument("--adaface_encoder_types", type=str, nargs="+", default=["arc2face"],
choices=["arc2face", "consistentID"], help="Type(s) of the ID2Ada prompt encoders")
# If adaface_encoder_cfg_scales is not specified, the weights will be set to 6.0 (consistentID) and 1.0 (arc2face).
parser.add_argument('--adaface_encoder_cfg_scales', type=float, nargs="+", default=None,
help="CFG scales of output embeddings of the ID2Ada prompt encoders")
parser.add_argument("--main_unet_filepath", type=str, default=None,
help="Path to the checkpoint of the main UNet model, if you want to replace the default UNet within --base_model_path")
parser.add_argument("--extra_unet_dirpaths", type=str, nargs="*",
default=['models/ensemble/rv4-unet', 'models/ensemble/ar18-unet'],
help="Extra paths to the checkpoints of the UNet models")
parser.add_argument('--unet_weights', type=float, nargs="+", default=[4, 2, 1],
help="Weights for the UNet models")
parser.add_argument("--subject", type=str)
parser.add_argument("--example_image_count", type=int, default=-1, help="Number of example images to use")
parser.add_argument("--out_image_count", type=int, default=4, help="Number of images to generate")
parser.add_argument("--prompt", type=str, default="a woman z in superman costume")
parser.add_argument("--noise", dest='perturb_std', type=float, default=0)
parser.add_argument("--randface", action="store_true")
parser.add_argument("--scale", dest='guidance_scale', type=float, default=4,
help="Guidance scale for the diffusion model")
parser.add_argument("--id_cfg_scale", type=float, default=6,
help="CFG scale when generating the identity embeddings")
parser.add_argument("--subject_string",
type=str, default="z",
help="Subject placeholder string used in prompts to denote the concept.")
parser.add_argument("--num_images_per_row", type=int, default=4,
help="Number of images to display in a row in the output grid image.")
parser.add_argument("--num_inference_steps", type=int, default=50,
help="Number of DDIM inference steps")
parser.add_argument("--device", type=str, default="cuda", help="Device to run the model on")
parser.add_argument("--seed", type=int, default=42,
help="the seed (for reproducible sampling). Set to -1 to disable.")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
if args.seed != -1:
seed_everything(args.seed)
if re.match(r"^\d+$", args.device):
args.device = f"cuda:{args.device}"
print(f"Using device {args.device}")
if args.pipeline not in ["text2img", "img2img"]:
args.extra_unet_dirpaths = None
args.unet_weights = None
adaface = AdaFaceWrapper(args.pipeline, args.base_model_path,
args.adaface_encoder_types, args.adaface_ckpt_paths,
args.adaface_encoder_cfg_scales,
args.subject_string, args.num_inference_steps,
unet_types=None,
main_unet_filepath=args.main_unet_filepath,
extra_unet_dirpaths=args.extra_unet_dirpaths,
unet_weights=args.unet_weights, device=args.device)
if not args.randface:
image_folder = args.subject
if image_folder.endswith("/"):
image_folder = image_folder[:-1]
if os.path.isfile(image_folder):
# Get the second to the last part of the path
subject_name = os.path.basename(os.path.dirname(image_folder))
image_paths = [image_folder]
else:
subject_name = os.path.basename(image_folder)
image_types = ["*.jpg", "*.png", "*.jpeg"]
alltype_image_paths = []
for image_type in image_types:
# glob returns the full path.
image_paths = glob.glob(os.path.join(image_folder, image_type))
if len(image_paths) > 0:
alltype_image_paths.extend(image_paths)
# Filter out images of "*_mask.png"
alltype_image_paths = [image_path for image_path in alltype_image_paths if "_mask.png" not in image_path]
# image_paths contain at most args.example_image_count full image paths.
if args.example_image_count > 0:
image_paths = alltype_image_paths[:args.example_image_count]
else:
image_paths = alltype_image_paths
else:
subject_name = None
image_paths = None
image_folder = None
subject_name = "randface-" + str(torch.seed()) if args.randface else subject_name
rand_init_id_embs = torch.randn(1, 512)
init_id_embs = rand_init_id_embs if args.randface else None
noise = torch.randn(args.out_image_count, 4, 64, 64).cuda()
# args.perturb_std: the *relative* std of the noise added to the face embeddings.
# A noise level of 0.08 could change gender, but 0.06 is usually safe.
# adaface_subj_embs is not used. It is generated for the purpose of updating the text encoder (within this function call).
adaface_subj_embs = \
adaface.prepare_adaface_embeddings(image_paths, init_id_embs,
perturb_at_stage='img_prompt_emb',
perturb_std=args.perturb_std, update_text_encoder=True)
images = adaface(noise, args.prompt, None, 'append', args.guidance_scale, args.out_image_count, verbose=True)
save_images(images, args.num_images_per_row, subject_name, f"guide{args.guidance_scale}", args.perturb_std)