adaface-animate / adaface /test_img_prompt_model.py
adaface-neurips
Integrate do_neg_id_prompt_weight, fix bugs, various refinements
f0b9ada
raw
history blame
10 kB
import torch
from PIL import Image
import os, argparse, glob
import numpy as np
from .face_id_to_ada_prompt import create_id2ada_prompt_encoder
from .util import create_consistentid_pipeline
from .arc2face_models import create_arc2face_pipeline
from transformers import CLIPTextModel
def save_images(images, subject_name, id2img_prompt_encoder_type,
prompt, perturb_std, save_dir = "samples-ada"):
os.makedirs(save_dir, exist_ok=True)
# Save 4 images as a grid image in save_dir
grid_image = Image.new('RGB', (512 * 2, 512 * 2))
for i, image in enumerate(images):
image = image.resize((512, 512))
grid_image.paste(image, (512 * (i % 2), 512 * (i // 2)))
prompt_sig = prompt.replace(" ", "_").replace(",", "_")
grid_filepath = os.path.join(save_dir,
"-".join([subject_name, id2img_prompt_encoder_type,
prompt_sig, f"perturb{perturb_std:.02f}.png"]))
if os.path.exists(grid_filepath):
grid_count = 2
grid_filepath = os.path.join(save_dir,
"-".join([ subject_name, id2img_prompt_encoder_type,
prompt_sig, f"perturb{perturb_std:.02f}", str(grid_count) ]) + ".png")
while os.path.exists(grid_filepath):
grid_count += 1
grid_filepath = os.path.join(save_dir,
"-".join([ subject_name, id2img_prompt_encoder_type,
prompt_sig, f"perturb{perturb_std:.02f}", str(grid_count) ]) + ".png")
grid_image.save(grid_filepath)
print(f"Saved to {grid_filepath}")
def seed_everything(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PL_GLOBAL_SEED"] = str(seed)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# --base_model_path models/Realistic_Vision_V4.0_noVAE
parser.add_argument("--base_model_path", type=str, default="models/sar/sar.safetensors")
parser.add_argument("--id2img_prompt_encoder_type", type=str,
choices=["arc2face", "consistentID"],
help="Types of the ID2Img prompt encoder")
parser.add_argument("--subject", type=str, default="subjects-celebrity/taylorswift")
parser.add_argument("--example_image_count", type=int, default=5, help="Number of example images to use")
parser.add_argument("--out_image_count", type=int, default=4, help="Number of images to generate")
parser.add_argument("--init_img", type=str, default=None)
parser.add_argument("--prompt", type=str, default="portrait photo of a person in superman costume")
parser.add_argument("--use_core_only", action="store_true")
parser.add_argument("--truncate_prompt_at", type=int, default=-1,
help="Truncate the prompt to this length")
parser.add_argument("--randface", action="store_true")
parser.add_argument("--seed", type=int, default=-1)
parser.add_argument("--perturb_std", type=float, default=1)
args = parser.parse_args()
if args.seed > 0:
seed_everything(args.seed)
if args.id2img_prompt_encoder_type == "arc2face":
pipeline = create_arc2face_pipeline(args.base_model_path)
use_teacher_neg = False
elif args.id2img_prompt_encoder_type == "consistentID":
pipeline = create_consistentid_pipeline(args.base_model_path)
use_teacher_neg = True
pipeline = pipeline.to('cuda', torch.float16)
# When the second argument, adaface_ckpt_path = None, create_id2ada_prompt_encoder()
# returns an id2ada_prompt_encoder object, with .subj_basis_generator uninitialized.
# But it doesn't matter, as we don't use the subj_basis_generator to generate ada embeddings.
id2img_prompt_encoder = create_id2ada_prompt_encoder([args.id2img_prompt_encoder_type],
num_static_img_suffix_embs=0)
id2img_prompt_encoder.to('cuda')
if not args.randface:
image_folder = args.subject
if image_folder.endswith("/"):
image_folder = image_folder[:-1]
if os.path.isfile(image_folder):
# Get the second to the last part of the path
subject_name = os.path.basename(os.path.dirname(image_folder))
image_paths = [image_folder]
else:
subject_name = os.path.basename(image_folder)
image_types = ["*.jpg", "*.png", "*.jpeg"]
alltype_image_paths = []
for image_type in image_types:
# glob returns the full path.
image_paths = glob.glob(os.path.join(image_folder, image_type))
if len(image_paths) > 0:
alltype_image_paths.extend(image_paths)
# image_paths contain at most args.example_image_count full image paths.
image_paths = alltype_image_paths[:args.example_image_count]
else:
subject_name = None
image_paths = None
image_folder = None
subject_name = "randface-" + str(torch.seed()) if args.randface else subject_name
id_batch_size = args.out_image_count
text_encoder = pipeline.text_encoder
orig_text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16).to("cuda")
noise = torch.randn(args.out_image_count, 4, 64, 64, device='cuda', dtype=torch.float16)
if args.randface:
init_id_embs = torch.randn(1, 512, device='cuda', dtype=torch.float16)
if args.id2img_prompt_encoder_type == "arc2face":
pre_clip_features = None
elif args.id2img_prompt_encoder_type == "consistentID":
# For ConsistentID, random clip features are much better than zero clip features.
rand_clip_fgbg_features = torch.randn(1, 514, 1280, device='cuda', dtype=torch.float16)
pre_clip_features = rand_clip_fgbg_features
else:
breakpoint()
else:
init_id_embs = None
pre_clip_features = None
# perturb_std is the *relative* std of the noise added to the face ID embeddings.
# For Arc2Face, a perturb_std of 0.08 could change gender, but 0.06 is usually safe.
# For ConsistentID, the image prompt embeddings are extremely robust to noise,
# and the perturb_std can be set to 0.5, only leading to a slight change in the result images.
# Seems ConsistentID mainly relies on CLIP features, instead of the face ID embeddings.
for perturb_std in (args.perturb_std, 0):
# id_prompt_emb is in the image prompt space.
# neg_id_prompt_emb is used in ConsistentID only.
face_image_count, faceid_embeds, id_prompt_emb, neg_id_prompt_emb \
= id2img_prompt_encoder.get_img_prompt_embs( \
init_id_embs=init_id_embs,
pre_clip_features=pre_clip_features,
image_paths=image_paths,
image_objs=None,
id_batch_size=id_batch_size,
perturb_at_stage='img_prompt_emb',
perturb_std=perturb_std,
avg_at_stage='id_emb',
verbose=True)
pipeline.text_encoder = orig_text_encoder
comp_prompt = args.prompt
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
# prompt_embeds_, negative_prompt_embeds_: [4, 77, 768]
prompt_embeds_, negative_prompt_embeds_ = \
pipeline.encode_prompt(comp_prompt, device='cuda', num_images_per_prompt=args.out_image_count,
do_classifier_free_guidance=True, negative_prompt=negative_prompt)
#pipeline.text_encoder = text_encoder
# Append the id prompt embeddings to the prompt embeddings.
# For arc2face, id_prompt_emb can be either pre- or post-pended.
# But for ConsistentID, id_prompt_emb has to be **post-pended**. Otherwise, the result images are blank.
full_negative_prompt_embeds_ = negative_prompt_embeds_
if args.truncate_prompt_at >= 0:
prompt_embeds_ = prompt_embeds_[:, :args.truncate_prompt_at]
negative_prompt_embeds_ = negative_prompt_embeds_[:, :args.truncate_prompt_at]
prompt_embeds_ = torch.cat([prompt_embeds_, id_prompt_emb], dim=1)
M = id_prompt_emb.shape[1]
if (not use_teacher_neg) or neg_id_prompt_emb is None:
# For arc2face, neg_id_prompt_emb is None. So we concatenate the last M negative prompt embeddings,
# to make the negative prompt embeddings have the same length as the prompt embeddings.
negative_prompt_embeds_ = torch.cat([negative_prompt_embeds_, full_negative_prompt_embeds_[:, -M:]], dim=1)
else:
# NOTE: For ConsistentID, neg_id_prompt_emb has to be present in the negative prompt embeddings.
# Otherwise, the result images are cartoonish.
negative_prompt_embeds_ = torch.cat([negative_prompt_embeds_, neg_id_prompt_emb], dim=1)
if args.use_core_only:
prompt_embeds_ = id_prompt_emb
if (not use_teacher_neg) or neg_id_prompt_emb is None:
negative_prompt_embeds_ = full_negative_prompt_embeds_[:, :M]
else:
negative_prompt_embeds_ = neg_id_prompt_emb
for guidance_scale in [6]:
images = pipeline(latents=noise,
prompt_embeds=prompt_embeds_,
negative_prompt_embeds=negative_prompt_embeds_,
num_inference_steps=50,
guidance_scale=guidance_scale,
num_images_per_prompt=1).images
save_images(images, subject_name, args.id2img_prompt_encoder_type,
f"guide{guidance_scale}", perturb_std)