|
import numpy as np |
|
import gradio as gr |
|
from PIL import Image |
|
import keras |
|
from huggingface_hub import from_pretrained_keras |
|
|
|
|
|
model = from_pretrained_keras("keras-io/lowlight-enhance-mirnet", compile=False) |
|
examples = ['examples/179.png', 'examples/493.png', 'examples/780.png'] |
|
|
|
|
|
def infer(original_image): |
|
image = keras.utils.img_to_array(original_image) |
|
image = image.astype("float32") / 255.0 |
|
image = np.expand_dims(image, axis=0) |
|
output = model.predict(image) |
|
output_image = output[0] * 255.0 |
|
output_image = output_image.clip(0, 255) |
|
output_image = output_image.reshape( |
|
(np.shape(output_image)[0], np.shape(output_image)[1], 3) |
|
) |
|
output_image = np.uint32(output_image) |
|
return output_image |
|
|
|
iface = gr.Interface( |
|
fn=infer, |
|
inputs=gr.inputs.Image(type="pil"), |
|
outputs=gr.outputs.Image(type="pil", label="predicted"), |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
enable_queue=True) |
|
iface.launch(debug=True) |