JiaRan / app.py
hhyxnh's picture
Update app.py
2817e39
raw
history blame
2.17 kB
import gradio as gr
import random
import time
# 假设这是队标的URL或本地路径
team_logo_url = './team-logo.jpg' # 替换为你的队标图片路径
speakers = ["subway"]
project_intro = """
## Automatic learning DEMO
**atomatic learning是一个训练方式的探索**
**通过采样视频素材来微调LLM和音色模型**
尽可能模仿出训练对象的说话语气和音色
_训练结果来自嘉然4个视频,时长6小时_
项目使用方案
- **语音**:bert-vits2 - **LLM**:Chat GLM-2
特别感谢:trochkera开源训练库
**注意**
- 所有文本数据来自视频ASR提取,价值观与基本信息未经人工对齐。所以我们不能对输出结果进行保证
_(例如她不知道自己是女生还是男生,因为视频未提及。也可能出现LLM的“幻觉”现象)_
- 所用的BERT-VITS2版本缘故,项目暂时只支持中文
项目即将开源,测试完成后率先打包至autodl社区-Code with GPU
_我们诚挚地感谢您的支持与反馈。_
_feedback email:hhyxnh@gmail_
"""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=4):
gr.Image(value=team_logo_url, width=400)
gr.Markdown(project_intro)
with gr.Column(scale=8):
chatbot = gr.Chatbot()
msg = gr.Textbox(placeholder="Type your message here...")
# people_speak = gr.Textbox(value="Human", label="Your name")
bot_speak = gr.Dropdown(
choices=speakers, value=speakers[0], label="Speaker"
)
with gr.Row():
submit = gr.Button("Chat!", variant="primary")
clear = gr.ClearButton([msg, chatbot])
def respond(people_speak, bot_speak, message, chat_history):
bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
chat_history.append(( message, bot_speak + ": " + bot_message))
time.sleep(1)
return "", chat_history
submit.click(respond, inputs=[bot_speak, msg, chatbot], outputs=[msg, chatbot])
if __name__ == "__main__":
demo.launch()