Spaces:
Build error
Build error
dataset_type = 'CocoDataset' | |
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/' | |
backend_args = None | |
max_epochs = 500 | |
metainfo = { | |
'classes': ('airplane', ), | |
'palette': [ | |
(0, 128, 255), | |
] | |
} | |
num_classes = 1 | |
model = dict( | |
type='RetinaNet', | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
mean=[ | |
123.675, | |
116.28, | |
103.53, | |
], | |
std=[ | |
58.395, | |
57.12, | |
57.375, | |
], | |
bgr_to_rgb=True, | |
pad_size_divisor=64, | |
batch_augments=[ | |
dict(type='BatchFixedSizePad', size=( | |
640, | |
640, | |
)), | |
]), | |
backbone=dict( | |
type='ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=( | |
0, | |
1, | |
2, | |
3, | |
), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=False, | |
style='pytorch', | |
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | |
neck=dict( | |
type='FPN', | |
in_channels=[ | |
256, | |
512, | |
1024, | |
2048, | |
], | |
out_channels=256, | |
start_level=1, | |
add_extra_convs='on_input', | |
num_outs=5, | |
relu_before_extra_convs=True, | |
no_norm_on_lateral=True, | |
norm_cfg=dict(type='BN', requires_grad=True)), | |
bbox_head=dict( | |
type='RetinaSepBNHead', | |
num_classes=1, | |
in_channels=256, | |
stacked_convs=4, | |
feat_channels=256, | |
anchor_generator=dict( | |
type='AnchorGenerator', | |
octave_base_scale=4, | |
scales_per_octave=3, | |
ratios=[ | |
0.5, | |
1.0, | |
2.0, | |
], | |
strides=[ | |
8, | |
16, | |
32, | |
64, | |
128, | |
]), | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[ | |
0.0, | |
0.0, | |
0.0, | |
0.0, | |
], | |
target_stds=[ | |
1.0, | |
1.0, | |
1.0, | |
1.0, | |
]), | |
loss_cls=dict( | |
type='FocalLoss', | |
use_sigmoid=True, | |
gamma=2.0, | |
alpha=0.25, | |
loss_weight=1.0), | |
loss_bbox=dict(type='L1Loss', loss_weight=1.0), | |
num_ins=5, | |
norm_cfg=dict(type='BN', requires_grad=True)), | |
train_cfg=dict( | |
assigner=dict( | |
type='MaxIoUAssigner', | |
pos_iou_thr=0.5, | |
neg_iou_thr=0.5, | |
min_pos_iou=0, | |
ignore_iof_thr=-1), | |
sampler=dict(type='PseudoSampler'), | |
allowed_border=-1, | |
pos_weight=-1, | |
debug=False), | |
test_cfg=dict( | |
nms_pre=1000, | |
min_bbox_size=0, | |
score_thr=0.05, | |
nms=dict(type='nms', iou_threshold=0.5), | |
max_per_img=100)) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='RandomResize', | |
scale=( | |
640, | |
640, | |
), | |
ratio_range=( | |
0.8, | |
1.2, | |
), | |
keep_ratio=True), | |
dict(type='RandomCrop', crop_size=( | |
640, | |
640, | |
)), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs'), | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='Resize', scale=( | |
640, | |
640, | |
), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
)), | |
] | |
train_dataloader = dict( | |
batch_size=32, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
batch_sampler=dict(type='AspectRatioBatchSampler'), | |
dataset=dict( | |
type='CocoDataset', | |
metainfo=dict(classes=('airplane', ), palette=[ | |
( | |
220, | |
20, | |
60, | |
), | |
]), | |
data_root='/home/safouane/Downloads/benchmark_aircraft/data/', | |
ann_file='train/__coco.json', | |
data_prefix=dict(img='train/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='RandomResize', | |
scale=( | |
640, | |
640, | |
), | |
ratio_range=( | |
0.8, | |
1.2, | |
), | |
keep_ratio=True), | |
dict(type='RandomCrop', crop_size=( | |
640, | |
640, | |
)), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs'), | |
], | |
backend_args=None)) | |
val_dataloader = dict( | |
batch_size=32, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='CocoDataset', | |
metainfo=dict(classes=('airplane', ), palette=[ | |
( | |
220, | |
20, | |
60, | |
), | |
]), | |
data_root='/home/safouane/Downloads/benchmark_aircraft/data/', | |
ann_file='val/__coco.json', | |
data_prefix=dict(img='val/'), | |
test_mode=True, | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='Resize', scale=( | |
640, | |
640, | |
), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
)), | |
], | |
backend_args=None)) | |
test_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='CocoDataset', | |
metainfo=dict(classes=('airplane', ), palette=[ | |
( | |
220, | |
20, | |
60, | |
), | |
]), | |
data_root='/home/safouane/Downloads/benchmark_aircraft/data/', | |
ann_file='test/__coco.json', | |
data_prefix=dict(img='test/'), | |
test_mode=True, | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='Resize', scale=( | |
640, | |
640, | |
), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
)), | |
], | |
backend_args=None)) | |
val_evaluator = dict( | |
type='CocoMetric', | |
ann_file='/home/safouane/Downloads/benchmark_aircraft/data/val/__coco.json', | |
metric='bbox', | |
format_only=False, | |
backend_args=None) | |
test_evaluator = dict( | |
type='CocoMetric', | |
ann_file= | |
'/home/safouane/Downloads/benchmark_aircraft/data/test/__coco.json', | |
metric='bbox', | |
format_only=False, | |
backend_args=None) | |
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=500, val_interval=10) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
param_scheduler = [ | |
dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=50, | |
by_epoch=True, | |
milestones=[ | |
30, | |
40, | |
], | |
gamma=0.1), | |
] | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=0.0001), | |
paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) | |
auto_scale_lr = dict(enable=False, base_batch_size=64) | |
default_scope = 'mmdet' | |
default_hooks = dict( | |
timer=dict(type='IterTimerHook'), | |
logger=dict(type='LoggerHook', interval=50), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict( | |
type='CheckpointHook', interval=20, max_keep_ckpts=2, | |
save_best='auto'), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
visualization=dict(type='DetVisualizationHook')) | |
env_cfg = dict( | |
cudnn_benchmark=True, | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | |
dist_cfg=dict(backend='nccl')) | |
vis_backends = [ | |
dict(type='LocalVisBackend'), | |
] | |
visualizer = dict( | |
type='DetLocalVisualizer', | |
vis_backends=[ | |
dict(type='LocalVisBackend'), | |
dict(type='TensorboardVisBackend'), | |
], | |
name='visualizer') | |
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) | |
log_level = 'INFO' | |
load_from = '/home/safouane/Downloads/benchmark_aircraft/mmlab_configs/retinanet_r50_fpn_crop640_50e_coco-9b953d76.pth' | |
resume = False | |
norm_cfg = dict(type='BN', requires_grad=True) | |
launcher = 'none' | |
work_dir = './work_dirs/retinanet_r50_fpn_crop640-50e_coco' | |