flightscope-test / inference /centernet_config.py
agucci's picture
Initial test
3b82ac6
dataset_type = 'CocoDataset'
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/' # dataset root
backend_args = None
max_epochs = 500
metainfo = {
'classes': ('airplane', ),
'palette': [
(0, 128, 255),
]
}
num_classes = 1
train_pipeline = [
dict(type='LoadImageFromFile', backend_args=None),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomChoiceResize',
scales=[
( 1333, 640, ),
( 1333, 672, ),
( 1333, 704, ),
( 1333, 736, ),
( 1333, 768, ),
( 1333, 800, ),
],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs'),
]
test_pipeline = [
dict(type='LoadImageFromFile', backend_args=None),
dict(type='Resize', scale=(
1333,
800,
), keep_ratio=True),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=(
'img_id',
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
)),
]
train_dataloader = dict(
batch_size=32,
num_workers=2,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
batch_sampler=dict(type='AspectRatioBatchSampler'),
dataset=dict(
type='CocoDataset',
metainfo=metainfo,
data_root=data_root,
ann_file='train/__coco.json',
data_prefix=dict(img='train/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=[
dict(type='LoadImageFromFile', backend_args=None),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='RandomChoiceResize',
scales=[
( 1333, 640, ),
( 1333, 672, ),
( 1333, 704, ),
( 1333, 736, ),
( 1333, 768, ),
( 1333, 800, ),
],
keep_ratio=True),
dict(type='RandomFlip', prob=0.5),
dict(type='PackDetInputs'),
],
backend_args=None))
val_dataloader = dict(
batch_size=32,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='CocoDataset',
metainfo=metainfo,
data_root=data_root,
ann_file='val/__coco.json',
data_prefix=dict(img='val/'),
test_mode=True,
pipeline=[
dict(type='LoadImageFromFile', backend_args=None),
dict(type='Resize', scale=(
1333,
800,
), keep_ratio=True),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=(
'img_id',
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
)),
],
backend_args=None))
test_dataloader = dict(
batch_size=32,
num_workers=2,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='CocoDataset',
metainfo=metainfo,
data_root=data_root,
ann_file='test/__coco.json',
data_prefix=dict(img='test/'),
test_mode=True,
pipeline=[
dict(type='LoadImageFromFile', backend_args=None),
dict(type='Resize', scale=(
1333,
800,
), keep_ratio=True),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=(
'img_id',
'img_path',
'ori_shape',
'img_shape',
'scale_factor',
)),
],
backend_args=None))
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'val/__coco.json',
metric='bbox',
format_only=False,
backend_args=None)
test_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'test/__coco.json',
metric='bbox',
format_only=False,
backend_args=None)
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=10)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
param_scheduler = [
dict(
type='LinearLR',
start_factor=0.00025,
by_epoch=False,
begin=0,
end=4000),
dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[
8,
11,
],
gamma=0.1),
]
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=0.0001),
paramwise_cfg=dict(norm_decay_mult=0.0))
auto_scale_lr = dict(enable=False, base_batch_size=32)
default_scope = 'mmdet'
default_hooks = dict(
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=5),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(
type='CheckpointHook',
interval=5,
max_keep_ckpts=2, # only keep latest 2 checkpoints
save_best='auto'
),
sampler_seed=dict(type='DistSamplerSeedHook'),
visualization=dict(type='DetVisualizationHook'))
env_cfg = dict(
cudnn_benchmark=False,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'))
vis_backends = [
dict(type='LocalVisBackend'),
]
visualizer = dict(
type='DetLocalVisualizer',
vis_backends=[
dict(type='LocalVisBackend'),
dict(type='TensorboardVisBackend'),
],
name='visualizer')
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)
log_level = 'INFO'
load_from = None
resume = False
model = dict(
type='CenterNet',
data_preprocessor=dict(
type='DetDataPreprocessor',
mean=[
103.53,
116.28,
123.675,
],
std=[
1.0,
1.0,
1.0,
],
bgr_to_rgb=False,
pad_size_divisor=32),
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(
0,
1,
2,
3,
),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='caffe',
init_cfg=dict(
type='Pretrained',
checkpoint='open-mmlab://detectron2/resnet50_caffe')),
neck=dict(
type='FPN',
in_channels=[
256,
512,
1024,
2048,
],
out_channels=256,
start_level=1,
add_extra_convs='on_output',
num_outs=5,
init_cfg=dict(type='Caffe2Xavier', layer='Conv2d'),
relu_before_extra_convs=True),
bbox_head=dict(
type='CenterNetUpdateHead',
num_classes=num_classes,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[
8,
16,
32,
64,
128,
],
hm_min_radius=4,
hm_min_overlap=0.8,
more_pos_thresh=0.2,
more_pos_topk=9,
soft_weight_on_reg=False,
loss_cls=dict(
type='GaussianFocalLoss',
pos_weight=0.25,
neg_weight=0.75,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=2.0)),
train_cfg=None,
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.6),
max_per_img=100))