Spaces:
Build error
Build error
dataset_type = 'CocoDataset' | |
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/' # dataset root | |
backend_args = None | |
max_epochs = 500 | |
metainfo = { | |
'classes': ('airplane', ), | |
'palette': [ | |
(0, 128, 255), | |
] | |
} | |
num_classes = 1 | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='RandomChoiceResize', | |
scales=[ | |
( 1333, 640, ), | |
( 1333, 672, ), | |
( 1333, 704, ), | |
( 1333, 736, ), | |
( 1333, 768, ), | |
( 1333, 800, ), | |
], | |
keep_ratio=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs'), | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='Resize', scale=( | |
1333, | |
800, | |
), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
)), | |
] | |
train_dataloader = dict( | |
batch_size=32, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
batch_sampler=dict(type='AspectRatioBatchSampler'), | |
dataset=dict( | |
type='CocoDataset', | |
metainfo=metainfo, | |
data_root=data_root, | |
ann_file='train/__coco.json', | |
data_prefix=dict(img='train/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='RandomChoiceResize', | |
scales=[ | |
( 1333, 640, ), | |
( 1333, 672, ), | |
( 1333, 704, ), | |
( 1333, 736, ), | |
( 1333, 768, ), | |
( 1333, 800, ), | |
], | |
keep_ratio=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs'), | |
], | |
backend_args=None)) | |
val_dataloader = dict( | |
batch_size=32, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='CocoDataset', | |
metainfo=metainfo, | |
data_root=data_root, | |
ann_file='val/__coco.json', | |
data_prefix=dict(img='val/'), | |
test_mode=True, | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='Resize', scale=( | |
1333, | |
800, | |
), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
)), | |
], | |
backend_args=None)) | |
test_dataloader = dict( | |
batch_size=32, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='CocoDataset', | |
metainfo=metainfo, | |
data_root=data_root, | |
ann_file='test/__coco.json', | |
data_prefix=dict(img='test/'), | |
test_mode=True, | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='Resize', scale=( | |
1333, | |
800, | |
), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
)), | |
], | |
backend_args=None)) | |
val_evaluator = dict( | |
type='CocoMetric', | |
ann_file=data_root + 'val/__coco.json', | |
metric='bbox', | |
format_only=False, | |
backend_args=None) | |
test_evaluator = dict( | |
type='CocoMetric', | |
ann_file=data_root + 'test/__coco.json', | |
metric='bbox', | |
format_only=False, | |
backend_args=None) | |
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=10) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
param_scheduler = [ | |
dict( | |
type='LinearLR', | |
start_factor=0.00025, | |
by_epoch=False, | |
begin=0, | |
end=4000), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=12, | |
by_epoch=True, | |
milestones=[ | |
8, | |
11, | |
], | |
gamma=0.1), | |
] | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=0.0001), | |
paramwise_cfg=dict(norm_decay_mult=0.0)) | |
auto_scale_lr = dict(enable=False, base_batch_size=32) | |
default_scope = 'mmdet' | |
default_hooks = dict( | |
timer=dict(type='IterTimerHook'), | |
logger=dict(type='LoggerHook', interval=5), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict( | |
type='CheckpointHook', | |
interval=5, | |
max_keep_ckpts=2, # only keep latest 2 checkpoints | |
save_best='auto' | |
), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
visualization=dict(type='DetVisualizationHook')) | |
env_cfg = dict( | |
cudnn_benchmark=False, | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | |
dist_cfg=dict(backend='nccl')) | |
vis_backends = [ | |
dict(type='LocalVisBackend'), | |
] | |
visualizer = dict( | |
type='DetLocalVisualizer', | |
vis_backends=[ | |
dict(type='LocalVisBackend'), | |
dict(type='TensorboardVisBackend'), | |
], | |
name='visualizer') | |
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) | |
log_level = 'INFO' | |
load_from = None | |
resume = False | |
model = dict( | |
type='CenterNet', | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
mean=[ | |
103.53, | |
116.28, | |
123.675, | |
], | |
std=[ | |
1.0, | |
1.0, | |
1.0, | |
], | |
bgr_to_rgb=False, | |
pad_size_divisor=32), | |
backbone=dict( | |
type='ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=( | |
0, | |
1, | |
2, | |
3, | |
), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=False), | |
norm_eval=True, | |
style='caffe', | |
init_cfg=dict( | |
type='Pretrained', | |
checkpoint='open-mmlab://detectron2/resnet50_caffe')), | |
neck=dict( | |
type='FPN', | |
in_channels=[ | |
256, | |
512, | |
1024, | |
2048, | |
], | |
out_channels=256, | |
start_level=1, | |
add_extra_convs='on_output', | |
num_outs=5, | |
init_cfg=dict(type='Caffe2Xavier', layer='Conv2d'), | |
relu_before_extra_convs=True), | |
bbox_head=dict( | |
type='CenterNetUpdateHead', | |
num_classes=num_classes, | |
in_channels=256, | |
stacked_convs=4, | |
feat_channels=256, | |
strides=[ | |
8, | |
16, | |
32, | |
64, | |
128, | |
], | |
hm_min_radius=4, | |
hm_min_overlap=0.8, | |
more_pos_thresh=0.2, | |
more_pos_topk=9, | |
soft_weight_on_reg=False, | |
loss_cls=dict( | |
type='GaussianFocalLoss', | |
pos_weight=0.25, | |
neg_weight=0.75, | |
loss_weight=1.0), | |
loss_bbox=dict(type='GIoULoss', loss_weight=2.0)), | |
train_cfg=None, | |
test_cfg=dict( | |
nms_pre=1000, | |
min_bbox_size=0, | |
score_thr=0.05, | |
nms=dict(type='nms', iou_threshold=0.6), | |
max_per_img=100)) | |