Spaces:
Build error
Build error
dataset_type = 'CocoDataset' | |
data_root = '/home/safouane/Downloads/benchmark_aircraft/data/' | |
backend_args = None | |
max_epochs = 500 | |
metainfo = { | |
'classes': ('airplane', ), | |
'palette': [ | |
(0, 128, 255), | |
] | |
} | |
num_classes = 1 | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict( | |
type='RandomChoice', | |
transforms=[ | |
[ | |
dict( | |
type='RandomChoiceResize', | |
scales=[ | |
( | |
480, | |
1333, | |
), | |
( | |
512, | |
1333, | |
), | |
( | |
544, | |
1333, | |
), | |
( | |
576, | |
1333, | |
), | |
( | |
608, | |
1333, | |
), | |
( | |
640, | |
1333, | |
), | |
( | |
672, | |
1333, | |
), | |
( | |
704, | |
1333, | |
), | |
( | |
736, | |
1333, | |
), | |
( | |
768, | |
1333, | |
), | |
( | |
800, | |
1333, | |
), | |
], | |
keep_ratio=True), | |
], | |
[ | |
dict( | |
type='RandomChoiceResize', | |
scales=[ | |
( | |
400, | |
1333, | |
), | |
( | |
500, | |
1333, | |
), | |
( | |
600, | |
1333, | |
), | |
], | |
keep_ratio=True), | |
dict( | |
type='RandomCrop', | |
crop_type='absolute_range', | |
crop_size=( | |
384, | |
600, | |
), | |
allow_negative_crop=True), | |
dict( | |
type='RandomChoiceResize', | |
scales=[ | |
( | |
480, | |
1333, | |
), | |
( | |
512, | |
1333, | |
), | |
( | |
544, | |
1333, | |
), | |
( | |
576, | |
1333, | |
), | |
( | |
608, | |
1333, | |
), | |
( | |
640, | |
1333, | |
), | |
( | |
672, | |
1333, | |
), | |
( | |
704, | |
1333, | |
), | |
( | |
736, | |
1333, | |
), | |
( | |
768, | |
1333, | |
), | |
( | |
800, | |
1333, | |
), | |
], | |
keep_ratio=True), | |
], | |
]), | |
dict(type='PackDetInputs'), | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='Resize', scale=( | |
1333, | |
800, | |
), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
)), | |
] | |
train_dataloader = dict( | |
batch_size=8, | |
num_workers=2, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
batch_sampler=dict(type='AspectRatioBatchSampler'), | |
dataset=dict( | |
type='CocoDataset', | |
metainfo=dict(classes=('airplane', ), palette=[ | |
( | |
220, | |
20, | |
60, | |
), | |
]), | |
data_root='/home/safouane/Downloads/benchmark_aircraft/data/', | |
ann_file='train/__coco.json', | |
data_prefix=dict(img='train/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict( | |
type='RandomChoice', | |
transforms=[ | |
[ | |
dict( | |
type='RandomChoiceResize', | |
scales=[ | |
( | |
480, | |
1333, | |
), | |
( | |
512, | |
1333, | |
), | |
( | |
544, | |
1333, | |
), | |
( | |
576, | |
1333, | |
), | |
( | |
608, | |
1333, | |
), | |
( | |
640, | |
1333, | |
), | |
( | |
672, | |
1333, | |
), | |
( | |
704, | |
1333, | |
), | |
( | |
736, | |
1333, | |
), | |
( | |
768, | |
1333, | |
), | |
( | |
800, | |
1333, | |
), | |
], | |
keep_ratio=True), | |
], | |
[ | |
dict( | |
type='RandomChoiceResize', | |
scales=[ | |
( | |
400, | |
1333, | |
), | |
( | |
500, | |
1333, | |
), | |
( | |
600, | |
1333, | |
), | |
], | |
keep_ratio=True), | |
dict( | |
type='RandomCrop', | |
crop_type='absolute_range', | |
crop_size=( | |
384, | |
600, | |
), | |
allow_negative_crop=True), | |
dict( | |
type='RandomChoiceResize', | |
scales=[ | |
( | |
480, | |
1333, | |
), | |
( | |
512, | |
1333, | |
), | |
( | |
544, | |
1333, | |
), | |
( | |
576, | |
1333, | |
), | |
( | |
608, | |
1333, | |
), | |
( | |
640, | |
1333, | |
), | |
( | |
672, | |
1333, | |
), | |
( | |
704, | |
1333, | |
), | |
( | |
736, | |
1333, | |
), | |
( | |
768, | |
1333, | |
), | |
( | |
800, | |
1333, | |
), | |
], | |
keep_ratio=True), | |
], | |
]), | |
dict(type='PackDetInputs'), | |
], | |
backend_args=None)) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='CocoDataset', | |
metainfo=dict(classes=('airplane', ), palette=[ | |
( | |
220, | |
20, | |
60, | |
), | |
]), | |
data_root='/home/safouane/Downloads/benchmark_aircraft/data/', | |
ann_file='val/__coco.json', | |
data_prefix=dict(img='val/'), | |
test_mode=True, | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='Resize', scale=( | |
1333, | |
800, | |
), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
)), | |
], | |
backend_args=None)) | |
test_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='CocoDataset', | |
metainfo=dict(classes=('airplane', ), palette=[ | |
( | |
220, | |
20, | |
60, | |
), | |
]), | |
data_root='/home/safouane/Downloads/benchmark_aircraft/data/', | |
ann_file='test/__coco.json', | |
data_prefix=dict(img='test/'), | |
test_mode=True, | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=None), | |
dict(type='Resize', scale=( | |
1333, | |
800, | |
), keep_ratio=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=( | |
'img_id', | |
'img_path', | |
'ori_shape', | |
'img_shape', | |
'scale_factor', | |
)), | |
], | |
backend_args=None)) | |
val_evaluator = dict( | |
type='CocoMetric', | |
ann_file='/home/safouane/Downloads/benchmark_aircraft/data/val/__coco.json', | |
metric='bbox', | |
format_only=False, | |
backend_args=None) | |
test_evaluator = dict( | |
type='CocoMetric', | |
ann_file= | |
'/home/safouane/Downloads/benchmark_aircraft/data/test/__coco.json', | |
metric='bbox', | |
format_only=False, | |
backend_args=None) | |
default_scope = 'mmdet' | |
default_hooks = dict( | |
timer=dict(type='IterTimerHook'), | |
logger=dict(type='LoggerHook', interval=5), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', interval=5, save_best='auto'), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
visualization=dict(type='DetVisualizationHook')) | |
env_cfg = dict( | |
cudnn_benchmark=False, | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | |
dist_cfg=dict(backend='nccl')) | |
vis_backends = [ | |
dict(type='LocalVisBackend'), | |
] | |
visualizer = dict( | |
type='DetLocalVisualizer', | |
vis_backends=[ | |
dict(type='LocalVisBackend'), | |
dict(type='TensorboardVisBackend'), | |
], | |
name='visualizer') | |
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) | |
log_level = 'INFO' | |
load_from = '/home/safouane/Downloads/benchmark_aircraft/mmdetection/configs/detr/checkpoints/detr_r50_8xb2-150e_coco_20221023_153551-436d03e8.pth' | |
resume = False | |
model = dict( | |
type='DETR', | |
num_queries=100, | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
mean=[ | |
123.675, | |
116.28, | |
103.53, | |
], | |
std=[ | |
58.395, | |
57.12, | |
57.375, | |
], | |
bgr_to_rgb=True, | |
pad_size_divisor=1), | |
backbone=dict( | |
type='ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(3, ), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=False), | |
norm_eval=True, | |
style='pytorch', | |
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | |
neck=dict( | |
type='ChannelMapper', | |
in_channels=[ | |
2048, | |
], | |
kernel_size=1, | |
out_channels=256, | |
act_cfg=None, | |
norm_cfg=None, | |
num_outs=1), | |
encoder=dict( | |
num_layers=6, | |
layer_cfg=dict( | |
self_attn_cfg=dict( | |
embed_dims=256, num_heads=8, dropout=0.1, batch_first=True), | |
ffn_cfg=dict( | |
embed_dims=256, | |
feedforward_channels=2048, | |
num_fcs=2, | |
ffn_drop=0.1, | |
act_cfg=dict(type='ReLU', inplace=True)))), | |
decoder=dict( | |
num_layers=6, | |
layer_cfg=dict( | |
self_attn_cfg=dict( | |
embed_dims=256, num_heads=8, dropout=0.1, batch_first=True), | |
cross_attn_cfg=dict( | |
embed_dims=256, num_heads=8, dropout=0.1, batch_first=True), | |
ffn_cfg=dict( | |
embed_dims=256, | |
feedforward_channels=2048, | |
num_fcs=2, | |
ffn_drop=0.1, | |
act_cfg=dict(type='ReLU', inplace=True))), | |
return_intermediate=True), | |
positional_encoding=dict(num_feats=128, normalize=True), | |
bbox_head=dict( | |
type='DETRHead', | |
num_classes=1, | |
embed_dims=256, | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
bg_cls_weight=0.1, | |
use_sigmoid=False, | |
loss_weight=1.0, | |
class_weight=1.0), | |
loss_bbox=dict(type='L1Loss', loss_weight=5.0), | |
loss_iou=dict(type='GIoULoss', loss_weight=2.0)), | |
train_cfg=dict( | |
assigner=dict( | |
type='HungarianAssigner', | |
match_costs=[ | |
dict(type='ClassificationCost', weight=1.0), | |
dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'), | |
dict(type='IoUCost', iou_mode='giou', weight=2.0), | |
])), | |
test_cfg=dict(max_per_img=100)) | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='AdamW', lr=0.0001, weight_decay=0.0001), | |
clip_grad=dict(max_norm=0.1, norm_type=2), | |
paramwise_cfg=dict( | |
custom_keys=dict(backbone=dict(lr_mult=0.1, decay_mult=1.0)))) | |
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=500, val_interval=1) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
param_scheduler = [ | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=150, | |
by_epoch=True, | |
milestones=[ | |
100, | |
], | |
gamma=0.1), | |
] | |
auto_scale_lr = dict(base_batch_size=16) | |
launcher = 'none' | |
work_dir = './work_dirs/detr_r50_8xb2-150e_coco' | |