File size: 6,256 Bytes
6127b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse
import importlib
import os
from argparse import RawTextHelpFormatter

import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm

from TTS.config import load_config
from TTS.tts.datasets.TTSDataset import TTSDataset
from TTS.tts.models import setup_model
from TTS.tts.utils.text.characters import make_symbols, phonemes, symbols
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_checkpoint

if __name__ == "__main__":
    # pylint: disable=bad-option-value
    parser = argparse.ArgumentParser(
        description="""Extract attention masks from trained Tacotron/Tacotron2 models.
These masks can be used for different purposes including training a TTS model with a Duration Predictor.\n\n"""
        """Each attention mask is written to the same path as the input wav file with ".npy" file extension.
(e.g. path/bla.wav (wav file) --> path/bla.npy (attention mask))\n"""
        """
Example run:
    CUDA_VISIBLE_DEVICE="0" python TTS/bin/compute_attention_masks.py
        --model_path /data/rw/home/Models/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/checkpoint_200000.pth
        --config_path /data/rw/home/Models/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/config.json
        --dataset_metafile metadata.csv
        --data_path /root/LJSpeech-1.1/
        --batch_size 32
        --dataset ljspeech
        --use_cuda True
""",
        formatter_class=RawTextHelpFormatter,
    )
    parser.add_argument("--model_path", type=str, required=True, help="Path to Tacotron/Tacotron2 model file ")
    parser.add_argument(
        "--config_path",
        type=str,
        required=True,
        help="Path to Tacotron/Tacotron2 config file.",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        default="",
        required=True,
        help="Target dataset processor name from TTS.tts.dataset.preprocess.",
    )

    parser.add_argument(
        "--dataset_metafile",
        type=str,
        default="",
        required=True,
        help="Dataset metafile inclusing file paths with transcripts.",
    )
    parser.add_argument("--data_path", type=str, default="", help="Defines the data path. It overwrites config.json.")
    parser.add_argument("--use_cuda", type=bool, default=False, help="enable/disable cuda.")

    parser.add_argument(
        "--batch_size", default=16, type=int, help="Batch size for the model. Use batch_size=1 if you have no CUDA."
    )
    args = parser.parse_args()

    C = load_config(args.config_path)
    ap = AudioProcessor(**C.audio)

    # if the vocabulary was passed, replace the default
    if "characters" in C.keys():
        symbols, phonemes = make_symbols(**C.characters)

    # load the model
    num_chars = len(phonemes) if C.use_phonemes else len(symbols)
    # TODO: handle multi-speaker
    model = setup_model(C)
    model, _ = load_checkpoint(model, args.model_path, args.use_cuda, True)

    # data loader
    preprocessor = importlib.import_module("TTS.tts.datasets.formatters")
    preprocessor = getattr(preprocessor, args.dataset)
    meta_data = preprocessor(args.data_path, args.dataset_metafile)
    dataset = TTSDataset(
        model.decoder.r,
        C.text_cleaner,
        compute_linear_spec=False,
        ap=ap,
        meta_data=meta_data,
        characters=C.characters if "characters" in C.keys() else None,
        add_blank=C["add_blank"] if "add_blank" in C.keys() else False,
        use_phonemes=C.use_phonemes,
        phoneme_cache_path=C.phoneme_cache_path,
        phoneme_language=C.phoneme_language,
        enable_eos_bos=C.enable_eos_bos_chars,
    )

    dataset.sort_and_filter_items(C.get("sort_by_audio_len", default=False))
    loader = DataLoader(
        dataset,
        batch_size=args.batch_size,
        num_workers=4,
        collate_fn=dataset.collate_fn,
        shuffle=False,
        drop_last=False,
    )

    # compute attentions
    file_paths = []
    with torch.no_grad():
        for data in tqdm(loader):
            # setup input data
            text_input = data[0]
            text_lengths = data[1]
            linear_input = data[3]
            mel_input = data[4]
            mel_lengths = data[5]
            stop_targets = data[6]
            item_idxs = data[7]

            # dispatch data to GPU
            if args.use_cuda:
                text_input = text_input.cuda()
                text_lengths = text_lengths.cuda()
                mel_input = mel_input.cuda()
                mel_lengths = mel_lengths.cuda()

            model_outputs = model.forward(text_input, text_lengths, mel_input)

            alignments = model_outputs["alignments"].detach()
            for idx, alignment in enumerate(alignments):
                item_idx = item_idxs[idx]
                # interpolate if r > 1
                alignment = (
                    torch.nn.functional.interpolate(
                        alignment.transpose(0, 1).unsqueeze(0),
                        size=None,
                        scale_factor=model.decoder.r,
                        mode="nearest",
                        align_corners=None,
                        recompute_scale_factor=None,
                    )
                    .squeeze(0)
                    .transpose(0, 1)
                )
                # remove paddings
                alignment = alignment[: mel_lengths[idx], : text_lengths[idx]].cpu().numpy()
                # set file paths
                wav_file_name = os.path.basename(item_idx)
                align_file_name = os.path.splitext(wav_file_name)[0] + "_attn.npy"
                file_path = item_idx.replace(wav_file_name, align_file_name)
                # save output
                wav_file_abs_path = os.path.abspath(item_idx)
                file_abs_path = os.path.abspath(file_path)
                file_paths.append([wav_file_abs_path, file_abs_path])
                np.save(file_path, alignment)

        # ourput metafile
        metafile = os.path.join(args.data_path, "metadata_attn_mask.txt")

        with open(metafile, "w", encoding="utf-8") as f:
            for p in file_paths:
                f.write(f"{p[0]}|{p[1]}\n")
        print(f" >> Metafile created: {metafile}")