File size: 14,389 Bytes
6127b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import argparse
import sys
import pandas as pd
from argparse import RawTextHelpFormatter

# pylint: disable=redefined-outer-name, unused-argument
from pathlib import Path

from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer
from tqdm.auto import tqdm


def str2bool(v):
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    if v.lower() in ("no", "false", "f", "n", "0"):
        return False
    raise argparse.ArgumentTypeError("Boolean value expected.")


def main():
    description = """Synthesize speech on command line.

You can either use your trained model or choose a model from the provided list.

If you don't specify any models, then it uses LJSpeech based English model.

## Example Runs

### Single Speaker Models

- List provided models:

    ```
    $ tts --list_models
    ```

- Query info for model info by idx:

    ```
    $ tts --model_info_by_idx "<model_type>/<model_query_idx>"
    ```

- Query info for model info by full name:

    ```
    $ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
    ```

- Run TTS with default models:

    ```
    $ tts --text "Text for TTS"
    ```

- Run a TTS model with its default vocoder model:

    ```
    $ tts --text "Text for TTS" --model_name "<language>/<dataset>/<model_name>"
    ```

- Run with specific TTS and vocoder models from the list:

    ```
    $ tts --text "Text for TTS" --model_name "<language>/<dataset>/<model_name>" --vocoder_name "<language>/<dataset>/<model_name>" --output_path
    ```

- Run your own TTS model (Using Griffin-Lim Vocoder):

    ```
    $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
    ```

- Run your own TTS and Vocoder models:
    ```
    $ tts --text "Text for TTS" --model_path path/to/config.json --config_path path/to/model.pth --out_path output/path/speech.wav
        --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json
    ```

### Multi-speaker Models

- List the available speakers and choose as <speaker_id> among them:

    ```
    $ tts --model_name "<language>/<dataset>/<model_name>"  --list_speaker_idxs
    ```

- Run the multi-speaker TTS model with the target speaker ID:

    ```
    $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>"  --speaker_idx <speaker_id>
    ```

- Run your own multi-speaker TTS model:

    ```
    $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/config.json --config_path path/to/model.pth --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
    ```
    """
    # We remove Markdown code formatting programmatically here to allow us to copy-and-paste from main README to keep
    # documentation in sync more easily.
    parser = argparse.ArgumentParser(
        description=description.replace("    ```\n", ""),
        formatter_class=RawTextHelpFormatter,
    )

    parser.add_argument(
        "--list_models",
        type=str2bool,
        nargs="?",
        const=True,
        default=False,
        help="list available pre-trained TTS and vocoder models.",
    )

    parser.add_argument(
        "--model_info_by_idx",
        type=str,
        default=None,
        help="model info using query format: <model_type>/<model_query_idx>",
    )

    parser.add_argument(
        "--model_info_by_name",
        type=str,
        default=None,
        help="model info using query format: <model_type>/<language>/<dataset>/<model_name>",
    )

    parser.add_argument("--text", type=str, default=None, help="Text to generate speech.")

    #parser.add_argument("--text_file_path", type=str, default=None, help="A csv file in LJSpeech format ('|' seperated id, text and speaker) to generate speech.")
    #parser.add_argument("--speaker_name_filter", type=str, default=None, help="Filter texts corresponding to a specific speaker in text_file_path ")

    # Args for running pre-trained TTS models.
    parser.add_argument(
        "--model_name",
        type=str,
        default="tts_models/en/ljspeech/tacotron2-DDC",
        help="Name of one of the pre-trained TTS models in format <language>/<dataset>/<model_name>",
    )
    parser.add_argument(
        "--vocoder_name",
        type=str,
        default=None,
        help="Name of one of the pre-trained  vocoder models in format <language>/<dataset>/<model_name>",
    )

    # Args for running custom models
    parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.")
    parser.add_argument(
        "--model_path",
        type=str,
        default=None,
        help="Path to model file.",
    )
    parser.add_argument(
        "--out_path",
        type=str,
        default="tts_output.wav",
        help="Output wav file path.",
    )

    # parser.add_argument(
    #     "--out_folder",
    #     type=str,
    #     default="tts_output",
    #     help="Output wav files folder.",
    # )

    parser.add_argument("--use_cuda", type=bool, help="Run model on CUDA.", default=False)
    parser.add_argument(
        "--vocoder_path",
        type=str,
        help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).",
        default=None,
    )
    parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None)
    parser.add_argument(
        "--encoder_path",
        type=str,
        help="Path to speaker encoder model file.",
        default=None,
    )
    parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None)

    # args for multi-speaker synthesis
    parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None)
    parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None)
    parser.add_argument(
        "--speaker_idx",
        type=str,
        help="Target speaker ID for a multi-speaker TTS model.",
        default=None,
    )
    parser.add_argument(
        "--language_idx",
        type=str,
        help="Target language ID for a multi-lingual TTS model.",
        default=None,
    )
    parser.add_argument(
        "--speaker_wav",
        nargs="+",
        help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.",
        default=None,
    )
    parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None)
    parser.add_argument(
        "--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None
    )
    parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None)
    parser.add_argument(
        "--list_speaker_idxs",
        help="List available speaker ids for the defined multi-speaker model.",
        type=str2bool,
        nargs="?",
        const=True,
        default=False,
    )
    parser.add_argument(
        "--list_language_idxs",
        help="List available language ids for the defined multi-lingual model.",
        type=str2bool,
        nargs="?",
        const=True,
        default=False,
    )
    # aux args
    parser.add_argument(
        "--save_spectogram",
        type=bool,
        help="If true save raw spectogram for further (vocoder) processing in out_path.",
        default=False,
    )
    parser.add_argument(
        "--reference_wav",
        type=str,
        help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav",
        default=None,
    )
    parser.add_argument(
        "--reference_speaker_idx",
        type=str,
        help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).",
        default=None,
    )
    args = parser.parse_args()

    # print the description if either text or list_models is not set
    check_args = [
        args.text,
        args.list_models,
        args.list_speaker_idxs,
        args.list_language_idxs,
        args.reference_wav,
        args.model_info_by_idx,
        args.model_info_by_name,
    ]
    if not any(check_args):
        parser.parse_args(["-h"])

    # load model manager
    path = Path(__file__).parent / "../.models.json"
    manager = ModelManager(path)

    model_path = None
    config_path = None
    speakers_file_path = None
    language_ids_file_path = None
    vocoder_path = None
    vocoder_config_path = None
    encoder_path = None
    encoder_config_path = None

    # CASE1 #list : list pre-trained TTS models
    if args.list_models:
        manager.list_models()
        sys.exit()

    # CASE2 #info : model info of pre-trained TTS models
    if args.model_info_by_idx:
        model_query = args.model_info_by_idx
        manager.model_info_by_idx(model_query)
        sys.exit()

    if args.model_info_by_name:
        model_query_full_name = args.model_info_by_name
        manager.model_info_by_full_name(model_query_full_name)
        sys.exit()

    # CASE3: load pre-trained model paths
    if args.model_name is not None and not args.model_path:
        model_path, config_path, model_item = manager.download_model(args.model_name)
        args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name

    if args.vocoder_name is not None and not args.vocoder_path:
        vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name)

    # CASE4: set custom model paths
    if args.model_path is not None:
        model_path = args.model_path
        config_path = args.config_path
        speakers_file_path = args.speakers_file_path
        language_ids_file_path = args.language_ids_file_path

    if args.vocoder_path is not None:
        vocoder_path = args.vocoder_path
        vocoder_config_path = args.vocoder_config_path

    if args.encoder_path is not None:
        encoder_path = args.encoder_path
        encoder_config_path = args.encoder_config_path

    # load models
    synthesizer = Synthesizer(
        model_path,
        config_path,
        speakers_file_path,
        language_ids_file_path,
        vocoder_path,
        vocoder_config_path,
        encoder_path,
        encoder_config_path,
        args.use_cuda,
    )

    # query speaker ids of a multi-speaker model.
    if args.list_speaker_idxs:
        print(
            " > Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model."
        )
        print(synthesizer.tts_model.speaker_manager.ids)
        return

    # query langauge ids of a multi-lingual model.
    if args.list_language_idxs:
        print(
            " > Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model."
        )
        print(synthesizer.tts_model.language_manager.ids)
        return

    # check the arguments against a multi-speaker model.
    if synthesizer.tts_speakers_file and (not args.speaker_idx and not args.speaker_wav):
        print(
            " [!] Looks like you use a multi-speaker model. Define `--speaker_idx` to "
            "select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`."
        )
        return

    # RUN THE SYNTHESIS
    if args.text.endswith('.csv'):
        df = pd.read_csv(args.text, sep='|')
        num_cols = df.shape[1]
        columns = ['id', 'text', 'speaker_name', 'gender', 'text_len', 'audio_len', 'speaker_wav'][:num_cols]
        df = pd.read_csv(args.text, sep='|', names=columns)
        df = df.head(10)

        # print(f'Number of examples before speaker filter: {len(df)}')
        # if args.speaker_name_filter:
        #     df = df[df['speaker_name']==args.speaker_name_filter]
        # print(f'Number of examples after speaker filter: {len(df)}')

        if len(df) == 0:
            raise ValueError("No records found.")

        if 'speaker_wav' in df.columns:
            for idx, row in tqdm(df.iterrows(), total=len(df), desc="Synthesizing"):
                wav = synthesizer.tts(
                    text=row['text'],
                    speaker_name=None,
                    language_name=args.language_idx,
                    speaker_wav=row['speaker_wav'],
                    reference_wav=args.reference_wav,
                    style_wav=args.capacitron_style_wav,
                    style_text=args.capacitron_style_text,
                    reference_speaker_name=args.reference_speaker_idx,
                )
                synthesizer.save_wav(wav, f'{args.out_path}/{row["id"]}.wav')
        else:
            for idx, row in tqdm(df.iterrows(), total=len(df), desc="Synthesizing"):
                wav = synthesizer.tts(
                    row['text'],
                    row['speaker_name'] if 'speaker_name' in df.columns else args.speaker_idx,
                    args.language_idx,
                    args.speaker_wav,
                    reference_wav=args.reference_wav,
                    style_wav=args.capacitron_style_wav,
                    style_text=args.capacitron_style_text,
                    reference_speaker_name=args.reference_speaker_idx,
                )
                synthesizer.save_wav(wav, f'{args.out_path}/{row["id"]}.wav')
        print(" > Saved output wav files in {}".format(args.out_path))
        return True

    if args.text:
        print(" > Text: {}".format(args.text))


    # kick it
    wav = synthesizer.tts(
        args.text,
        args.speaker_idx,
        args.language_idx,
        args.speaker_wav,
        reference_wav=args.reference_wav,
        style_wav=args.capacitron_style_wav,
        style_text=args.capacitron_style_text,
        reference_speaker_name=args.reference_speaker_idx,
    )

    # save the results
    print(" > Saving output to {}".format(args.out_path))
    synthesizer.save_wav(wav, args.out_path)


if __name__ == "__main__":
    main()