File size: 1,874 Bytes
6127b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from abc import abstractmethod
from typing import Dict

import torch
from coqpit import Coqpit
from trainer import TrainerModel

# pylint: skip-file


class BaseTrainerModel(TrainerModel):
    """BaseTrainerModel model expanding TrainerModel with required functions by 🐸TTS.

    Every new 🐸TTS model must inherit it.
    """

    @staticmethod
    @abstractmethod
    def init_from_config(config: Coqpit):
        """Init the model and all its attributes from the given config.

        Override this depending on your model.
        """
        ...

    @abstractmethod
    def inference(self, input: torch.Tensor, aux_input={}) -> Dict:
        """Forward pass for inference.

        It must return a dictionary with the main model output and all the auxiliary outputs. The key ```model_outputs```
        is considered to be the main output and you can add any other auxiliary outputs as you want.

        We don't use `*kwargs` since it is problematic with the TorchScript API.

        Args:
            input (torch.Tensor): [description]
            aux_input (Dict): Auxiliary inputs like speaker embeddings, durations etc.

        Returns:
            Dict: [description]
        """
        outputs_dict = {"model_outputs": None}
        ...
        return outputs_dict

    @abstractmethod
    def load_checkpoint(self, config: Coqpit, checkpoint_path: str, eval: bool = False, strict: bool = True) -> None:
        """Load a model checkpoint gile and get ready for training or inference.

        Args:
            config (Coqpit): Model configuration.
            checkpoint_path (str): Path to the model checkpoint file.
            eval (bool, optional): If true, init model for inference else for training. Defaults to False.
            strcit (bool, optional): Match all checkpoint keys to model's keys. Defaults to True.
        """
        ...