File size: 6,154 Bytes
6127b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!flask/bin/python
import argparse
import io
import json
import os
import sys
from pathlib import Path
from typing import Union

from flask import Flask, render_template, request, send_file

from TTS.config import load_config
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer


def create_argparser():
    def convert_boolean(x):
        return x.lower() in ["true", "1", "yes"]

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--list_models",
        type=convert_boolean,
        nargs="?",
        const=True,
        default=False,
        help="list available pre-trained tts and vocoder models.",
    )
    parser.add_argument(
        "--model_name",
        type=str,
        default="tts_models/en/ljspeech/tacotron2-DDC",
        help="Name of one of the pre-trained tts models in format <language>/<dataset>/<model_name>",
    )
    parser.add_argument("--vocoder_name", type=str, default=None, help="name of one of the released vocoder models.")

    # Args for running custom models
    parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.")
    parser.add_argument(
        "--model_path",
        type=str,
        default=None,
        help="Path to model file.",
    )
    parser.add_argument(
        "--vocoder_path",
        type=str,
        help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).",
        default=None,
    )
    parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None)
    parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None)
    parser.add_argument("--port", type=int, default=5002, help="port to listen on.")
    parser.add_argument("--use_cuda", type=convert_boolean, default=False, help="true to use CUDA.")
    parser.add_argument("--debug", type=convert_boolean, default=False, help="true to enable Flask debug mode.")
    parser.add_argument("--show_details", type=convert_boolean, default=False, help="Generate model detail page.")
    return parser


# parse the args
args = create_argparser().parse_args()

path = Path(__file__).parent / "../.models.json"
manager = ModelManager(path)

if args.list_models:
    manager.list_models()
    sys.exit()

# update in-use models to the specified released models.
model_path = None
config_path = None
speakers_file_path = None
vocoder_path = None
vocoder_config_path = None

# CASE1: list pre-trained TTS models
if args.list_models:
    manager.list_models()
    sys.exit()

# CASE2: load pre-trained model paths
if args.model_name is not None and not args.model_path:
    model_path, config_path, model_item = manager.download_model(args.model_name)
    args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name

if args.vocoder_name is not None and not args.vocoder_path:
    vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name)

# CASE3: set custom model paths
if args.model_path is not None:
    model_path = args.model_path
    config_path = args.config_path
    speakers_file_path = args.speakers_file_path

if args.vocoder_path is not None:
    vocoder_path = args.vocoder_path
    vocoder_config_path = args.vocoder_config_path

# load models
synthesizer = Synthesizer(
    tts_checkpoint=model_path,
    tts_config_path=config_path,
    tts_speakers_file=speakers_file_path,
    tts_languages_file=None,
    vocoder_checkpoint=vocoder_path,
    vocoder_config=vocoder_config_path,
    encoder_checkpoint="",
    encoder_config="",
    use_cuda=args.use_cuda,
)

use_multi_speaker = hasattr(synthesizer.tts_model, "num_speakers") and (
    synthesizer.tts_model.num_speakers > 1 or synthesizer.tts_speakers_file is not None
)

speaker_manager = getattr(synthesizer.tts_model, "speaker_manager", None)
# TODO: set this from SpeakerManager
use_gst = synthesizer.tts_config.get("use_gst", False)
app = Flask(__name__)


def style_wav_uri_to_dict(style_wav: str) -> Union[str, dict]:
    """Transform an uri style_wav, in either a string (path to wav file to be use for style transfer)
    or a dict (gst tokens/values to be use for styling)

    Args:
        style_wav (str): uri

    Returns:
        Union[str, dict]: path to file (str) or gst style (dict)
    """
    if style_wav:
        if os.path.isfile(style_wav) and style_wav.endswith(".wav"):
            return style_wav  # style_wav is a .wav file located on the server

        style_wav = json.loads(style_wav)
        return style_wav  # style_wav is a gst dictionary with {token1_id : token1_weigth, ...}
    return None


@app.route("/")
def index():
    return render_template(
        "index.html",
        show_details=args.show_details,
        use_multi_speaker=use_multi_speaker,
        speaker_ids=speaker_manager.ids if speaker_manager is not None else None,
        use_gst=use_gst,
    )


@app.route("/details")
def details():
    model_config = load_config(args.tts_config)
    if args.vocoder_config is not None and os.path.isfile(args.vocoder_config):
        vocoder_config = load_config(args.vocoder_config)
    else:
        vocoder_config = None

    return render_template(
        "details.html",
        show_details=args.show_details,
        model_config=model_config,
        vocoder_config=vocoder_config,
        args=args.__dict__,
    )


@app.route("/api/tts", methods=["GET"])
def tts():
    text = request.args.get("text")
    speaker_idx = request.args.get("speaker_id", "")
    style_wav = request.args.get("style_wav", "")
    style_wav = style_wav_uri_to_dict(style_wav)
    print(" > Model input: {}".format(text))
    print(" > Speaker Idx: {}".format(speaker_idx))
    wavs = synthesizer.tts(text, speaker_name=speaker_idx, style_wav=style_wav)
    out = io.BytesIO()
    synthesizer.save_wav(wavs, out)
    return send_file(out, mimetype="audio/wav")


def main():
    app.run(debug=args.debug, host="::", port=args.port)


if __name__ == "__main__":
    main()