File size: 7,058 Bytes
6127b48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
# -*- coding: utf-8 -*-
import datetime
import importlib
import os
import re
import subprocess
import sys
from pathlib import Path
from typing import Dict
import fsspec
import torch
def to_cuda(x: torch.Tensor) -> torch.Tensor:
if x is None:
return None
if torch.is_tensor(x):
x = x.contiguous()
if torch.cuda.is_available():
x = x.cuda(non_blocking=True)
return x
def get_cuda():
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
return use_cuda, device
def get_git_branch():
try:
out = subprocess.check_output(["git", "branch"]).decode("utf8")
current = next(line for line in out.split("\n") if line.startswith("*"))
current.replace("* ", "")
except subprocess.CalledProcessError:
current = "inside_docker"
except FileNotFoundError:
current = "unknown"
return current
def get_commit_hash():
"""https://stackoverflow.com/questions/14989858/get-the-current-git-hash-in-a-python-script"""
# try:
# subprocess.check_output(['git', 'diff-index', '--quiet',
# 'HEAD']) # Verify client is clean
# except:
# raise RuntimeError(
# " !! Commit before training to get the commit hash.")
try:
commit = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]).decode().strip()
# Not copying .git folder into docker container
except (subprocess.CalledProcessError, FileNotFoundError):
commit = "0000000"
return commit
def get_experiment_folder_path(root_path, model_name):
"""Get an experiment folder path with the current date and time"""
date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I+%M%p")
commit_hash = get_commit_hash()
output_folder = os.path.join(root_path, model_name + "-" + date_str + "-" + commit_hash)
return output_folder
def remove_experiment_folder(experiment_path):
"""Check folder if there is a checkpoint, otherwise remove the folder"""
fs = fsspec.get_mapper(experiment_path).fs
checkpoint_files = fs.glob(experiment_path + "/*.pth")
if not checkpoint_files:
if fs.exists(experiment_path):
fs.rm(experiment_path, recursive=True)
print(" ! Run is removed from {}".format(experiment_path))
else:
print(" ! Run is kept in {}".format(experiment_path))
def count_parameters(model):
r"""Count number of trainable parameters in a network"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def to_camel(text):
text = text.capitalize()
text = re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text)
text = text.replace("Tts", "TTS")
return text
def find_module(module_path: str, module_name: str) -> object:
module_name = module_name.lower()
module = importlib.import_module(module_path + "." + module_name)
class_name = to_camel(module_name)
return getattr(module, class_name)
def import_class(module_path: str) -> object:
"""Import a class from a module path.
Args:
module_path (str): The module path of the class.
Returns:
object: The imported class.
"""
class_name = module_path.split(".")[-1]
module_path = ".".join(module_path.split(".")[:-1])
module = importlib.import_module(module_path)
return getattr(module, class_name)
def get_import_path(obj: object) -> str:
"""Get the import path of a class.
Args:
obj (object): The class object.
Returns:
str: The import path of the class.
"""
return ".".join([type(obj).__module__, type(obj).__name__])
def get_user_data_dir(appname):
if sys.platform == "win32":
import winreg # pylint: disable=import-outside-toplevel
key = winreg.OpenKey(
winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders"
)
dir_, _ = winreg.QueryValueEx(key, "Local AppData")
ans = Path(dir_).resolve(strict=False)
elif sys.platform == "darwin":
ans = Path("~/Library/Application Support/").expanduser()
else:
ans = Path.home().joinpath(".local/share")
return ans.joinpath(appname)
def set_init_dict(model_dict, checkpoint_state, c):
# Partial initialization: if there is a mismatch with new and old layer, it is skipped.
for k, v in checkpoint_state.items():
if k not in model_dict:
print(" | > Layer missing in the model definition: {}".format(k))
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict}
# 2. filter out different size layers
pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()}
# 3. skip reinit layers
if c.has("reinit_layers") and c.reinit_layers is not None:
for reinit_layer_name in c.reinit_layers:
pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k}
# 4. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict)))
return model_dict
def format_aux_input(def_args: Dict, kwargs: Dict) -> Dict:
"""Format kwargs to hande auxilary inputs to models.
Args:
def_args (Dict): A dictionary of argument names and their default values if not defined in `kwargs`.
kwargs (Dict): A `dict` or `kwargs` that includes auxilary inputs to the model.
Returns:
Dict: arguments with formatted auxilary inputs.
"""
for name in def_args:
if name not in kwargs:
kwargs[def_args[name]] = None
return kwargs
class KeepAverage:
def __init__(self):
self.avg_values = {}
self.iters = {}
def __getitem__(self, key):
return self.avg_values[key]
def items(self):
return self.avg_values.items()
def add_value(self, name, init_val=0, init_iter=0):
self.avg_values[name] = init_val
self.iters[name] = init_iter
def update_value(self, name, value, weighted_avg=False):
if name not in self.avg_values:
# add value if not exist before
self.add_value(name, init_val=value)
else:
# else update existing value
if weighted_avg:
self.avg_values[name] = 0.99 * self.avg_values[name] + 0.01 * value
self.iters[name] += 1
else:
self.avg_values[name] = self.avg_values[name] * self.iters[name] + value
self.iters[name] += 1
self.avg_values[name] /= self.iters[name]
def add_values(self, name_dict):
for key, value in name_dict.items():
self.add_value(key, init_val=value)
def update_values(self, value_dict):
for key, value in value_dict.items():
self.update_value(key, value)
|