File size: 5,168 Bytes
6127b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from dataclasses import dataclass, field

from .shared_configs import BaseGANVocoderConfig


@dataclass
class FullbandMelganConfig(BaseGANVocoderConfig):
    """Defines parameters for FullBand MelGAN vocoder.

    Example:

        >>> from TTS.vocoder.configs import FullbandMelganConfig
        >>> config = FullbandMelganConfig()

    Args:
        model (str):
            Model name used for selecting the right model at initialization. Defaults to `fullband_melgan`.
        discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to
            'melgan_multiscale_discriminator`.
        discriminator_model_params (dict): The discriminator model parameters. Defaults to
            '{"base_channels": 16, "max_channels": 1024, "downsample_factors": [4, 4, 4, 4]}`
        generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is
            considered as a generator too. Defaults to `melgan_generator`.
        batch_size (int):
            Batch size used at training. Larger values use more memory. Defaults to 16.
        seq_len (int):
            Audio segment length used at training. Larger values use more memory. Defaults to 8192.
        pad_short (int):
            Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0.
        use_noise_augment (bool):
            enable / disable random noise added to the input waveform. The noise is added after computing the
            features. Defaults to True.
        use_cache (bool):
            enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is
            not large enough. Defaults to True.
        use_stft_loss (bool):
            enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True.
        use_subband_stft (bool):
            enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True.
        use_mse_gan_loss (bool):
            enable / disable using Mean Squeare Error GAN loss. Defaults to True.
        use_hinge_gan_loss (bool):
            enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models.
            Defaults to False.
        use_feat_match_loss (bool):
            enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True.
        use_l1_spec_loss (bool):
            enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False.
        stft_loss_params (dict): STFT loss parameters. Default to
        `{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}`
        stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total
            model loss. Defaults to 0.5.
        subband_stft_loss_weight (float):
            Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0.
        mse_G_loss_weight (float):
            MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5.
        hinge_G_loss_weight (float):
            Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0.
        feat_match_loss_weight (float):
            Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 108.
        l1_spec_loss_weight (float):
            L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0.
    """

    model: str = "fullband_melgan"

    # Model specific params
    discriminator_model: str = "melgan_multiscale_discriminator"
    discriminator_model_params: dict = field(
        default_factory=lambda: {"base_channels": 16, "max_channels": 512, "downsample_factors": [4, 4, 4]}
    )
    generator_model: str = "melgan_generator"
    generator_model_params: dict = field(
        default_factory=lambda: {"upsample_factors": [8, 8, 2, 2], "num_res_blocks": 4}
    )

    # Training - overrides
    batch_size: int = 16
    seq_len: int = 8192
    pad_short: int = 2000
    use_noise_augment: bool = True
    use_cache: bool = True

    # LOSS PARAMETERS - overrides
    use_stft_loss: bool = True
    use_subband_stft_loss: bool = False
    use_mse_gan_loss: bool = True
    use_hinge_gan_loss: bool = False
    use_feat_match_loss: bool = True  # requires MelGAN Discriminators (MelGAN and HifiGAN)
    use_l1_spec_loss: bool = False

    stft_loss_params: dict = field(
        default_factory=lambda: {
            "n_ffts": [1024, 2048, 512],
            "hop_lengths": [120, 240, 50],
            "win_lengths": [600, 1200, 240],
        }
    )

    # loss weights - overrides
    stft_loss_weight: float = 0.5
    subband_stft_loss_weight: float = 0
    mse_G_loss_weight: float = 2.5
    hinge_G_loss_weight: float = 0
    feat_match_loss_weight: float = 108
    l1_spec_loss_weight: float = 0.0