File size: 8,694 Bytes
6127b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from dataclasses import dataclass, field

from TTS.config import BaseAudioConfig, BaseTrainingConfig


@dataclass
class BaseVocoderConfig(BaseTrainingConfig):
    """Shared parameters among all the vocoder models.
    Args:
        audio (BaseAudioConfig):
            Audio processor config instance. Defaultsto `BaseAudioConfig()`.
        use_noise_augment (bool):
            Augment the input audio with random noise. Defaults to False/
        eval_split_size (int):
            Number of instances used for evaluation. Defaults to 10.
        data_path (str):
            Root path of the training data. All the audio files found recursively from this root path are used for
            training. Defaults to `""`.
        feature_path (str):
            Root path to the precomputed feature files. Defaults to None.
        seq_len (int):
            Length of the waveform segments used for training. Defaults to 1000.
        pad_short (int):
            Extra padding for the waveforms shorter than `seq_len`. Defaults to 0.
        conv_path (int):
            Extra padding for the feature frames against convolution of the edge frames. Defaults to MISSING.
            Defaults to 0.
        use_cache (bool):
            enable / disable in memory caching of the computed features. If the RAM is not enough, if may cause OOM.
            Defaults to False.
        epochs (int):
            Number of training epochs to. Defaults to 10000.
        wd (float):
            Weight decay.
         optimizer (torch.optim.Optimizer):
            Optimizer used for the training. Defaults to `AdamW`.
        optimizer_params (dict):
            Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}`
    """

    audio: BaseAudioConfig = field(default_factory=BaseAudioConfig)
    # dataloading
    use_noise_augment: bool = False  # enable/disable random noise augmentation in spectrograms.
    eval_split_size: int = 10  # number of samples used for evaluation.
    # dataset
    data_path: str = ""  # root data path. It finds all wav files recursively from there.
    feature_path: str = None  # if you use precomputed features
    seq_len: int = 1000  # signal length used in training.
    pad_short: int = 0  # additional padding for short wavs
    conv_pad: int = 0  # additional padding against convolutions applied to spectrograms
    use_cache: bool = False  # use in memory cache to keep the computed features. This might cause OOM.
    # OPTIMIZER
    epochs: int = 10000  # total number of epochs to train.
    wd: float = 0.0  # Weight decay weight.
    optimizer: str = "AdamW"
    optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "weight_decay": 0.0})


@dataclass
class BaseGANVocoderConfig(BaseVocoderConfig):
    """Base config class used among all the GAN based vocoders.
    Args:
        use_stft_loss (bool):
            enable / disable the use of STFT loss. Defaults to True.
        use_subband_stft_loss (bool):
            enable / disable the use of Subband STFT loss. Defaults to True.
        use_mse_gan_loss (bool):
            enable / disable the use of Mean Squared Error based GAN loss. Defaults to True.
        use_hinge_gan_loss (bool):
            enable / disable the use of Hinge GAN loss. Defaults to True.
        use_feat_match_loss (bool):
            enable / disable feature matching loss. Defaults to True.
        use_l1_spec_loss (bool):
            enable / disable L1 spectrogram loss. Defaults to True.
        stft_loss_weight (float):
            Loss weight that multiplies the computed loss value. Defaults to 0.
        subband_stft_loss_weight (float):
            Loss weight that multiplies the computed loss value. Defaults to 0.
        mse_G_loss_weight (float):
            Loss weight that multiplies the computed loss value. Defaults to 1.
        hinge_G_loss_weight (float):
            Loss weight that multiplies the computed loss value. Defaults to 0.
        feat_match_loss_weight (float):
            Loss weight that multiplies the computed loss value. Defaults to 100.
        l1_spec_loss_weight (float):
            Loss weight that multiplies the computed loss value. Defaults to 45.
        stft_loss_params (dict):
            Parameters for the STFT loss. Defaults to `{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}`.
        l1_spec_loss_params (dict):
            Parameters for the L1 spectrogram loss. Defaults to
            `{
                "use_mel": True,
                "sample_rate": 22050,
                "n_fft": 1024,
                "hop_length": 256,
                "win_length": 1024,
                "n_mels": 80,
                "mel_fmin": 0.0,
                "mel_fmax": None,
            }`
        target_loss (str):
            Target loss name that defines the quality of the model. Defaults to `G_avg_loss`.
        grad_clip (list):
            A list of gradient clipping theresholds for each optimizer. Any value less than 0 disables clipping.
            Defaults to [5, 5].
        lr_gen (float):
            Generator model initial learning rate. Defaults to 0.0002.
        lr_disc (float):
            Discriminator model initial learning rate. Defaults to 0.0002.
        lr_scheduler_gen (torch.optim.Scheduler):
            Learning rate scheduler for the generator. Defaults to `ExponentialLR`.
        lr_scheduler_gen_params (dict):
            Parameters for the generator learning rate scheduler. Defaults to `{"gamma": 0.999, "last_epoch": -1}`.
        lr_scheduler_disc (torch.optim.Scheduler):
            Learning rate scheduler for the discriminator. Defaults to `ExponentialLR`.
        lr_scheduler_disc_params (dict):
            Parameters for the discriminator learning rate scheduler. Defaults to `{"gamma": 0.999, "last_epoch": -1}`.
        scheduler_after_epoch (bool):
            Whether to update the learning rate schedulers after each epoch. Defaults to True.
        use_pqmf (bool):
            enable / disable PQMF for subband approximation at training. Defaults to False.
        steps_to_start_discriminator (int):
            Number of steps required to start training the discriminator. Defaults to 0.
        diff_samples_for_G_and_D (bool):
            enable / disable use of different training samples for the generator and the discriminator iterations.
            Enabling it results in slower iterations but faster convergance in some cases. Defaults to False.
    """

    model: str = "gan"

    # LOSS PARAMETERS
    use_stft_loss: bool = True
    use_subband_stft_loss: bool = True
    use_mse_gan_loss: bool = True
    use_hinge_gan_loss: bool = True
    use_feat_match_loss: bool = True  # requires MelGAN Discriminators (MelGAN and HifiGAN)
    use_l1_spec_loss: bool = True

    # loss weights
    stft_loss_weight: float = 0
    subband_stft_loss_weight: float = 0
    mse_G_loss_weight: float = 1
    hinge_G_loss_weight: float = 0
    feat_match_loss_weight: float = 100
    l1_spec_loss_weight: float = 45

    stft_loss_params: dict = field(
        default_factory=lambda: {
            "n_ffts": [1024, 2048, 512],
            "hop_lengths": [120, 240, 50],
            "win_lengths": [600, 1200, 240],
        }
    )

    l1_spec_loss_params: dict = field(
        default_factory=lambda: {
            "use_mel": True,
            "sample_rate": 22050,
            "n_fft": 1024,
            "hop_length": 256,
            "win_length": 1024,
            "n_mels": 80,
            "mel_fmin": 0.0,
            "mel_fmax": None,
        }
    )

    target_loss: str = "loss_0"  # loss value to pick the best model to save after each epoch

    # optimizer
    grad_clip: float = field(default_factory=lambda: [5, 5])
    lr_gen: float = 0.0002  # Initial learning rate.
    lr_disc: float = 0.0002  # Initial learning rate.
    lr_scheduler_gen: str = "ExponentialLR"  # one of the schedulers from https:#pytorch.org/docs/stable/optim.html
    lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1})
    lr_scheduler_disc: str = "ExponentialLR"  # one of the schedulers from https:#pytorch.org/docs/stable/optim.html
    lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1})
    scheduler_after_epoch: bool = True

    use_pqmf: bool = False  # enable/disable using pqmf for multi-band training. (Multi-band MelGAN)
    steps_to_start_discriminator = 0  # start training the discriminator after this number of steps.
    diff_samples_for_G_and_D: bool = False  # use different samples for G and D training steps.