File size: 5,501 Bytes
6127b48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import math
import numpy as np
import torch
from TTS.utils.io import load_fsspec
from TTS.vocoder.layers.parallel_wavegan import ResidualBlock
from TTS.vocoder.layers.upsample import ConvUpsample
class ParallelWaveganGenerator(torch.nn.Module):
"""PWGAN generator as in https://arxiv.org/pdf/1910.11480.pdf.
It is similar to WaveNet with no causal convolution.
It is conditioned on an aux feature (spectrogram) to generate
an output waveform from an input noise.
"""
# pylint: disable=dangerous-default-value
def __init__(
self,
in_channels=1,
out_channels=1,
kernel_size=3,
num_res_blocks=30,
stacks=3,
res_channels=64,
gate_channels=128,
skip_channels=64,
aux_channels=80,
dropout=0.0,
bias=True,
use_weight_norm=True,
upsample_factors=[4, 4, 4, 4],
inference_padding=2,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.aux_channels = aux_channels
self.num_res_blocks = num_res_blocks
self.stacks = stacks
self.kernel_size = kernel_size
self.upsample_factors = upsample_factors
self.upsample_scale = np.prod(upsample_factors)
self.inference_padding = inference_padding
self.use_weight_norm = use_weight_norm
# check the number of layers and stacks
assert num_res_blocks % stacks == 0
layers_per_stack = num_res_blocks // stacks
# define first convolution
self.first_conv = torch.nn.Conv1d(in_channels, res_channels, kernel_size=1, bias=True)
# define conv + upsampling network
self.upsample_net = ConvUpsample(upsample_factors=upsample_factors)
# define residual blocks
self.conv_layers = torch.nn.ModuleList()
for layer in range(num_res_blocks):
dilation = 2 ** (layer % layers_per_stack)
conv = ResidualBlock(
kernel_size=kernel_size,
res_channels=res_channels,
gate_channels=gate_channels,
skip_channels=skip_channels,
aux_channels=aux_channels,
dilation=dilation,
dropout=dropout,
bias=bias,
)
self.conv_layers += [conv]
# define output layers
self.last_conv_layers = torch.nn.ModuleList(
[
torch.nn.ReLU(inplace=True),
torch.nn.Conv1d(skip_channels, skip_channels, kernel_size=1, bias=True),
torch.nn.ReLU(inplace=True),
torch.nn.Conv1d(skip_channels, out_channels, kernel_size=1, bias=True),
]
)
# apply weight norm
if use_weight_norm:
self.apply_weight_norm()
def forward(self, c):
"""
c: (B, C ,T').
o: Output tensor (B, out_channels, T)
"""
# random noise
x = torch.randn([c.shape[0], 1, c.shape[2] * self.upsample_scale])
x = x.to(self.first_conv.bias.device)
# perform upsampling
if c is not None and self.upsample_net is not None:
c = self.upsample_net(c)
assert (
c.shape[-1] == x.shape[-1]
), f" [!] Upsampling scale does not match the expected output. {c.shape} vs {x.shape}"
# encode to hidden representation
x = self.first_conv(x)
skips = 0
for f in self.conv_layers:
x, h = f(x, c)
skips += h
skips *= math.sqrt(1.0 / len(self.conv_layers))
# apply final layers
x = skips
for f in self.last_conv_layers:
x = f(x)
return x
@torch.no_grad()
def inference(self, c):
c = c.to(self.first_conv.weight.device)
c = torch.nn.functional.pad(c, (self.inference_padding, self.inference_padding), "replicate")
return self.forward(c)
def remove_weight_norm(self):
def _remove_weight_norm(m):
try:
# print(f"Weight norm is removed from {m}.")
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
self.apply(_remove_weight_norm)
def apply_weight_norm(self):
def _apply_weight_norm(m):
if isinstance(m, (torch.nn.Conv1d, torch.nn.Conv2d)):
torch.nn.utils.weight_norm(m)
# print(f"Weight norm is applied to {m}.")
self.apply(_apply_weight_norm)
@staticmethod
def _get_receptive_field_size(layers, stacks, kernel_size, dilation=lambda x: 2**x):
assert layers % stacks == 0
layers_per_cycle = layers // stacks
dilations = [dilation(i % layers_per_cycle) for i in range(layers)]
return (kernel_size - 1) * sum(dilations) + 1
@property
def receptive_field_size(self):
return self._get_receptive_field_size(self.layers, self.stacks, self.kernel_size)
def load_checkpoint(
self, config, checkpoint_path, eval=False
): # pylint: disable=unused-argument, redefined-builtin
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
self.load_state_dict(state["model"])
if eval:
self.eval()
assert not self.training
if self.use_weight_norm:
self.remove_weight_norm()
|