|
import argparse |
|
import os |
|
from argparse import RawTextHelpFormatter |
|
|
|
import torch |
|
from tqdm import tqdm |
|
|
|
from TTS.config import load_config |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.utils.managers import save_file |
|
from TTS.tts.utils.speakers import SpeakerManager |
|
|
|
parser = argparse.ArgumentParser( |
|
description="""Compute embedding vectors for each wav file in a dataset.\n\n""" |
|
""" |
|
Example runs: |
|
python TTS/bin/compute_embeddings.py speaker_encoder_model.pth speaker_encoder_config.json dataset_config.json |
|
""", |
|
formatter_class=RawTextHelpFormatter, |
|
) |
|
parser.add_argument("model_path", type=str, help="Path to model checkpoint file.") |
|
parser.add_argument("config_path", type=str, help="Path to model config file.") |
|
parser.add_argument("config_dataset_path", type=str, help="Path to dataset config file.") |
|
parser.add_argument("--output_path", type=str, help="Path for output `pth` or `json` file.", default="speakers.pth") |
|
parser.add_argument("--old_file", type=str, help="Previous embedding file to only compute new audios.", default=None) |
|
parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False) |
|
parser.add_argument("--no_eval", type=bool, help="Do not compute eval?. Default False", default=False) |
|
|
|
args = parser.parse_args() |
|
|
|
use_cuda = torch.cuda.is_available() and not args.disable_cuda |
|
|
|
c_dataset = load_config(args.config_dataset_path) |
|
|
|
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not args.no_eval) |
|
|
|
if meta_data_eval is None: |
|
wav_files = meta_data_train |
|
else: |
|
wav_files = meta_data_train + meta_data_eval |
|
|
|
encoder_manager = SpeakerManager( |
|
encoder_model_path=args.model_path, |
|
encoder_config_path=args.config_path, |
|
d_vectors_file_path=args.old_file, |
|
use_cuda=use_cuda, |
|
) |
|
|
|
class_name_key = encoder_manager.encoder_config.class_name_key |
|
|
|
|
|
speaker_mapping = {} |
|
for idx, wav_file in enumerate(tqdm(wav_files)): |
|
if isinstance(wav_file, dict): |
|
class_name = wav_file[class_name_key] |
|
wav_file = wav_file["audio_file"] |
|
else: |
|
class_name = None |
|
|
|
wav_file_name = os.path.basename(wav_file) |
|
if args.old_file is not None and wav_file_name in encoder_manager.clip_ids: |
|
|
|
embedd = encoder_manager.get_embedding_by_clip(wav_file_name) |
|
else: |
|
|
|
embedd = encoder_manager.compute_embedding_from_clip(wav_file) |
|
|
|
|
|
speaker_mapping[wav_file_name] = {} |
|
speaker_mapping[wav_file_name]["name"] = class_name |
|
speaker_mapping[wav_file_name]["embedding"] = embedd |
|
|
|
if speaker_mapping: |
|
|
|
if os.path.isdir(args.output_path): |
|
mapping_file_path = os.path.join(args.output_path, "speakers.pth") |
|
else: |
|
mapping_file_path = args.output_path |
|
|
|
if os.path.dirname(mapping_file_path) != "": |
|
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True) |
|
|
|
save_file(speaker_mapping, mapping_file_path) |
|
print("Speaker embeddings saved at:", mapping_file_path) |
|
|