|
from dataclasses import asdict, dataclass |
|
from typing import List |
|
|
|
from coqpit import Coqpit, check_argument |
|
from trainer import TrainerConfig |
|
|
|
|
|
@dataclass |
|
class BaseAudioConfig(Coqpit): |
|
"""Base config to definge audio processing parameters. It is used to initialize |
|
```TTS.utils.audio.AudioProcessor.``` |
|
|
|
Args: |
|
fft_size (int): |
|
Number of STFT frequency levels aka.size of the linear spectogram frame. Defaults to 1024. |
|
|
|
win_length (int): |
|
Each frame of audio is windowed by window of length ```win_length``` and then padded with zeros to match |
|
```fft_size```. Defaults to 1024. |
|
|
|
hop_length (int): |
|
Number of audio samples between adjacent STFT columns. Defaults to 1024. |
|
|
|
frame_shift_ms (int): |
|
Set ```hop_length``` based on milliseconds and sampling rate. |
|
|
|
frame_length_ms (int): |
|
Set ```win_length``` based on milliseconds and sampling rate. |
|
|
|
stft_pad_mode (str): |
|
Padding method used in STFT. 'reflect' or 'center'. Defaults to 'reflect'. |
|
|
|
sample_rate (int): |
|
Audio sampling rate. Defaults to 22050. |
|
|
|
resample (bool): |
|
Enable / Disable resampling audio to ```sample_rate```. Defaults to ```False```. |
|
|
|
preemphasis (float): |
|
Preemphasis coefficient. Defaults to 0.0. |
|
|
|
ref_level_db (int): 20 |
|
Reference Db level to rebase the audio signal and ignore the level below. 20Db is assumed the sound of air. |
|
Defaults to 20. |
|
|
|
do_sound_norm (bool): |
|
Enable / Disable sound normalization to reconcile the volume differences among samples. Defaults to False. |
|
|
|
log_func (str): |
|
Numpy log function used for amplitude to DB conversion. Defaults to 'np.log10'. |
|
|
|
do_trim_silence (bool): |
|
Enable / Disable trimming silences at the beginning and the end of the audio clip. Defaults to ```True```. |
|
|
|
do_amp_to_db_linear (bool, optional): |
|
enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True. |
|
|
|
do_amp_to_db_mel (bool, optional): |
|
enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True. |
|
|
|
pitch_fmax (float, optional): |
|
Maximum frequency of the F0 frames. Defaults to ```640```. |
|
|
|
pitch_fmin (float, optional): |
|
Minimum frequency of the F0 frames. Defaults to ```0```. |
|
|
|
trim_db (int): |
|
Silence threshold used for silence trimming. Defaults to 45. |
|
|
|
do_rms_norm (bool, optional): |
|
enable/disable RMS volume normalization when loading an audio file. Defaults to False. |
|
|
|
db_level (int, optional): |
|
dB level used for rms normalization. The range is -99 to 0. Defaults to None. |
|
|
|
power (float): |
|
Exponent used for expanding spectrogra levels before running Griffin Lim. It helps to reduce the |
|
artifacts in the synthesized voice. Defaults to 1.5. |
|
|
|
griffin_lim_iters (int): |
|
Number of Griffing Lim iterations. Defaults to 60. |
|
|
|
num_mels (int): |
|
Number of mel-basis frames that defines the frame lengths of each mel-spectrogram frame. Defaults to 80. |
|
|
|
mel_fmin (float): Min frequency level used for the mel-basis filters. ~50 for male and ~95 for female voices. |
|
It needs to be adjusted for a dataset. Defaults to 0. |
|
|
|
mel_fmax (float): |
|
Max frequency level used for the mel-basis filters. It needs to be adjusted for a dataset. |
|
|
|
spec_gain (int): |
|
Gain applied when converting amplitude to DB. Defaults to 20. |
|
|
|
signal_norm (bool): |
|
enable/disable signal normalization. Defaults to True. |
|
|
|
min_level_db (int): |
|
minimum db threshold for the computed melspectrograms. Defaults to -100. |
|
|
|
symmetric_norm (bool): |
|
enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else |
|
[0, k], Defaults to True. |
|
|
|
max_norm (float): |
|
```k``` defining the normalization range. Defaults to 4.0. |
|
|
|
clip_norm (bool): |
|
enable/disable clipping the our of range values in the normalized audio signal. Defaults to True. |
|
|
|
stats_path (str): |
|
Path to the computed stats file. Defaults to None. |
|
""" |
|
|
|
|
|
fft_size: int = 1024 |
|
win_length: int = 1024 |
|
hop_length: int = 256 |
|
frame_shift_ms: int = None |
|
frame_length_ms: int = None |
|
stft_pad_mode: str = "reflect" |
|
|
|
sample_rate: int = 22050 |
|
resample: bool = False |
|
preemphasis: float = 0.0 |
|
ref_level_db: int = 20 |
|
do_sound_norm: bool = False |
|
log_func: str = "np.log10" |
|
|
|
do_trim_silence: bool = True |
|
trim_db: int = 45 |
|
|
|
do_rms_norm: bool = False |
|
db_level: float = None |
|
|
|
power: float = 1.5 |
|
griffin_lim_iters: int = 60 |
|
|
|
num_mels: int = 80 |
|
mel_fmin: float = 0.0 |
|
mel_fmax: float = None |
|
spec_gain: int = 20 |
|
do_amp_to_db_linear: bool = True |
|
do_amp_to_db_mel: bool = True |
|
|
|
pitch_fmax: float = 640.0 |
|
pitch_fmin: float = 0.0 |
|
|
|
signal_norm: bool = True |
|
min_level_db: int = -100 |
|
symmetric_norm: bool = True |
|
max_norm: float = 4.0 |
|
clip_norm: bool = True |
|
stats_path: str = None |
|
|
|
def check_values( |
|
self, |
|
): |
|
"""Check config fields""" |
|
c = asdict(self) |
|
check_argument("num_mels", c, restricted=True, min_val=10, max_val=2056) |
|
check_argument("fft_size", c, restricted=True, min_val=128, max_val=4058) |
|
check_argument("sample_rate", c, restricted=True, min_val=512, max_val=100000) |
|
check_argument( |
|
"frame_length_ms", |
|
c, |
|
restricted=True, |
|
min_val=10, |
|
max_val=1000, |
|
alternative="win_length", |
|
) |
|
check_argument("frame_shift_ms", c, restricted=True, min_val=1, max_val=1000, alternative="hop_length") |
|
check_argument("preemphasis", c, restricted=True, min_val=0, max_val=1) |
|
check_argument("min_level_db", c, restricted=True, min_val=-1000, max_val=10) |
|
check_argument("ref_level_db", c, restricted=True, min_val=0, max_val=1000) |
|
check_argument("power", c, restricted=True, min_val=1, max_val=5) |
|
check_argument("griffin_lim_iters", c, restricted=True, min_val=10, max_val=1000) |
|
|
|
|
|
check_argument("signal_norm", c, restricted=True) |
|
check_argument("symmetric_norm", c, restricted=True) |
|
check_argument("max_norm", c, restricted=True, min_val=0.1, max_val=1000) |
|
check_argument("clip_norm", c, restricted=True) |
|
check_argument("mel_fmin", c, restricted=True, min_val=0.0, max_val=1000) |
|
check_argument("mel_fmax", c, restricted=True, min_val=500.0, allow_none=True) |
|
check_argument("spec_gain", c, restricted=True, min_val=1, max_val=100) |
|
check_argument("do_trim_silence", c, restricted=True) |
|
check_argument("trim_db", c, restricted=True) |
|
|
|
|
|
@dataclass |
|
class BaseDatasetConfig(Coqpit): |
|
"""Base config for TTS datasets. |
|
|
|
Args: |
|
name (str): |
|
Dataset name that defines the preprocessor in use. Defaults to None. |
|
|
|
path (str): |
|
Root path to the dataset files. Defaults to None. |
|
|
|
meta_file_train (str): |
|
Name of the dataset meta file. Or a list of speakers to be ignored at training for multi-speaker datasets. |
|
Defaults to None. |
|
|
|
ignored_speakers (List): |
|
List of speakers IDs that are not used at the training. Default None. |
|
|
|
language (str): |
|
Language code of the dataset. If defined, it overrides `phoneme_language`. Defaults to None. |
|
|
|
meta_file_val (str): |
|
Name of the dataset meta file that defines the instances used at validation. |
|
|
|
meta_file_attn_mask (str): |
|
Path to the file that lists the attention mask files used with models that require attention masks to |
|
train the duration predictor. |
|
""" |
|
|
|
name: str = "" |
|
path: str = "" |
|
meta_file_train: str = "" |
|
ignored_speakers: List[str] = None |
|
language: str = "" |
|
meta_file_val: str = "" |
|
meta_file_attn_mask: str = "" |
|
|
|
def check_values( |
|
self, |
|
): |
|
"""Check config fields""" |
|
c = asdict(self) |
|
check_argument("name", c, restricted=True) |
|
check_argument("path", c, restricted=True) |
|
check_argument("meta_file_train", c, restricted=True) |
|
check_argument("meta_file_val", c, restricted=False) |
|
check_argument("meta_file_attn_mask", c, restricted=False) |
|
|
|
|
|
@dataclass |
|
class BaseTrainingConfig(TrainerConfig): |
|
"""Base config to define the basic 🐸TTS training parameters that are shared |
|
among all the models. It is based on ```Trainer.TrainingConfig```. |
|
|
|
Args: |
|
model (str): |
|
Name of the model that is used in the training. |
|
|
|
num_loader_workers (int): |
|
Number of workers for training time dataloader. |
|
|
|
num_eval_loader_workers (int): |
|
Number of workers for evaluation time dataloader. |
|
""" |
|
|
|
model: str = None |
|
|
|
num_loader_workers: int = 0 |
|
num_eval_loader_workers: int = 0 |
|
use_noise_augment: bool = False |
|
|