indic / TTS /encoder /utils /generic_utils.py
azamat's picture
Init
6127b48
raw
history blame
6.86 kB
import datetime
import glob
import os
import random
import re
import numpy as np
from scipy import signal
from TTS.encoder.models.lstm import LSTMSpeakerEncoder
from TTS.encoder.models.resnet import ResNetSpeakerEncoder
from TTS.utils.io import save_fsspec
class AugmentWAV(object):
def __init__(self, ap, augmentation_config):
self.ap = ap
self.use_additive_noise = False
if "additive" in augmentation_config.keys():
self.additive_noise_config = augmentation_config["additive"]
additive_path = self.additive_noise_config["sounds_path"]
if additive_path:
self.use_additive_noise = True
# get noise types
self.additive_noise_types = []
for key in self.additive_noise_config.keys():
if isinstance(self.additive_noise_config[key], dict):
self.additive_noise_types.append(key)
additive_files = glob.glob(os.path.join(additive_path, "**/*.wav"), recursive=True)
self.noise_list = {}
for wav_file in additive_files:
noise_dir = wav_file.replace(additive_path, "").split(os.sep)[0]
# ignore not listed directories
if noise_dir not in self.additive_noise_types:
continue
if not noise_dir in self.noise_list:
self.noise_list[noise_dir] = []
self.noise_list[noise_dir].append(wav_file)
print(
f" | > Using Additive Noise Augmentation: with {len(additive_files)} audios instances from {self.additive_noise_types}"
)
self.use_rir = False
if "rir" in augmentation_config.keys():
self.rir_config = augmentation_config["rir"]
if self.rir_config["rir_path"]:
self.rir_files = glob.glob(os.path.join(self.rir_config["rir_path"], "**/*.wav"), recursive=True)
self.use_rir = True
print(f" | > Using RIR Noise Augmentation: with {len(self.rir_files)} audios instances")
self.create_augmentation_global_list()
def create_augmentation_global_list(self):
if self.use_additive_noise:
self.global_noise_list = self.additive_noise_types
else:
self.global_noise_list = []
if self.use_rir:
self.global_noise_list.append("RIR_AUG")
def additive_noise(self, noise_type, audio):
clean_db = 10 * np.log10(np.mean(audio**2) + 1e-4)
noise_list = random.sample(
self.noise_list[noise_type],
random.randint(
self.additive_noise_config[noise_type]["min_num_noises"],
self.additive_noise_config[noise_type]["max_num_noises"],
),
)
audio_len = audio.shape[0]
noises_wav = None
for noise in noise_list:
noiseaudio = self.ap.load_wav(noise, sr=self.ap.sample_rate)[:audio_len]
if noiseaudio.shape[0] < audio_len:
continue
noise_snr = random.uniform(
self.additive_noise_config[noise_type]["min_snr_in_db"],
self.additive_noise_config[noise_type]["max_num_noises"],
)
noise_db = 10 * np.log10(np.mean(noiseaudio**2) + 1e-4)
noise_wav = np.sqrt(10 ** ((clean_db - noise_db - noise_snr) / 10)) * noiseaudio
if noises_wav is None:
noises_wav = noise_wav
else:
noises_wav += noise_wav
# if all possible files is less than audio, choose other files
if noises_wav is None:
return self.additive_noise(noise_type, audio)
return audio + noises_wav
def reverberate(self, audio):
audio_len = audio.shape[0]
rir_file = random.choice(self.rir_files)
rir = self.ap.load_wav(rir_file, sr=self.ap.sample_rate)
rir = rir / np.sqrt(np.sum(rir**2))
return signal.convolve(audio, rir, mode=self.rir_config["conv_mode"])[:audio_len]
def apply_one(self, audio):
noise_type = random.choice(self.global_noise_list)
if noise_type == "RIR_AUG":
return self.reverberate(audio)
return self.additive_noise(noise_type, audio)
def to_camel(text):
text = text.capitalize()
return re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text)
def setup_encoder_model(config: "Coqpit"):
if config.model_params["model_name"].lower() == "lstm":
model = LSTMSpeakerEncoder(
config.model_params["input_dim"],
config.model_params["proj_dim"],
config.model_params["lstm_dim"],
config.model_params["num_lstm_layers"],
use_torch_spec=config.model_params.get("use_torch_spec", False),
audio_config=config.audio,
)
elif config.model_params["model_name"].lower() == "resnet":
model = ResNetSpeakerEncoder(
input_dim=config.model_params["input_dim"],
proj_dim=config.model_params["proj_dim"],
log_input=config.model_params.get("log_input", False),
use_torch_spec=config.model_params.get("use_torch_spec", False),
audio_config=config.audio,
)
return model
def save_checkpoint(model, optimizer, criterion, model_loss, out_path, current_step, epoch):
checkpoint_path = "checkpoint_{}.pth".format(current_step)
checkpoint_path = os.path.join(out_path, checkpoint_path)
print(" | | > Checkpoint saving : {}".format(checkpoint_path))
new_state_dict = model.state_dict()
state = {
"model": new_state_dict,
"optimizer": optimizer.state_dict() if optimizer is not None else None,
"criterion": criterion.state_dict(),
"step": current_step,
"epoch": epoch,
"loss": model_loss,
"date": datetime.date.today().strftime("%B %d, %Y"),
}
save_fsspec(state, checkpoint_path)
def save_best_model(model, optimizer, criterion, model_loss, best_loss, out_path, current_step, epoch):
if model_loss < best_loss:
new_state_dict = model.state_dict()
state = {
"model": new_state_dict,
"optimizer": optimizer.state_dict(),
"criterion": criterion.state_dict(),
"step": current_step,
"epoch": epoch,
"loss": model_loss,
"date": datetime.date.today().strftime("%B %d, %Y"),
}
best_loss = model_loss
bestmodel_path = "best_model.pth"
bestmodel_path = os.path.join(out_path, bestmodel_path)
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(model_loss, bestmodel_path))
save_fsspec(state, bestmodel_path)
return best_loss