indic / TTS /encoder /utils /samplers.py
azamat's picture
Init
6127b48
raw
history blame
3.81 kB
import random
from torch.utils.data.sampler import Sampler, SubsetRandomSampler
class SubsetSampler(Sampler):
"""
Samples elements sequentially from a given list of indices.
Args:
indices (list): a sequence of indices
"""
def __init__(self, indices):
super().__init__(indices)
self.indices = indices
def __iter__(self):
return (self.indices[i] for i in range(len(self.indices)))
def __len__(self):
return len(self.indices)
class PerfectBatchSampler(Sampler):
"""
Samples a mini-batch of indices for a balanced class batching
Args:
dataset_items(list): dataset items to sample from.
classes (list): list of classes of dataset_items to sample from.
batch_size (int): total number of samples to be sampled in a mini-batch.
num_gpus (int): number of GPU in the data parallel mode.
shuffle (bool): if True, samples randomly, otherwise samples sequentially.
drop_last (bool): if True, drops last incomplete batch.
"""
def __init__(
self,
dataset_items,
classes,
batch_size,
num_classes_in_batch,
num_gpus=1,
shuffle=True,
drop_last=False,
label_key="class_name",
):
super().__init__(dataset_items)
assert (
batch_size % (num_classes_in_batch * num_gpus) == 0
), "Batch size must be divisible by number of classes times the number of data parallel devices (if enabled)."
label_indices = {}
for idx, item in enumerate(dataset_items):
label = item[label_key]
if label not in label_indices.keys():
label_indices[label] = [idx]
else:
label_indices[label].append(idx)
if shuffle:
self._samplers = [SubsetRandomSampler(label_indices[key]) for key in classes]
else:
self._samplers = [SubsetSampler(label_indices[key]) for key in classes]
self._batch_size = batch_size
self._drop_last = drop_last
self._dp_devices = num_gpus
self._num_classes_in_batch = num_classes_in_batch
def __iter__(self):
batch = []
if self._num_classes_in_batch != len(self._samplers):
valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch)
else:
valid_samplers_idx = None
iters = [iter(s) for s in self._samplers]
done = False
while True:
b = []
for i, it in enumerate(iters):
if valid_samplers_idx is not None and i not in valid_samplers_idx:
continue
idx = next(it, None)
if idx is None:
done = True
break
b.append(idx)
if done:
break
batch += b
if len(batch) == self._batch_size:
yield batch
batch = []
if valid_samplers_idx is not None:
valid_samplers_idx = random.sample(range(len(self._samplers)), self._num_classes_in_batch)
if not self._drop_last:
if len(batch) > 0:
groups = len(batch) // self._num_classes_in_batch
if groups % self._dp_devices == 0:
yield batch
else:
batch = batch[: (groups // self._dp_devices) * self._dp_devices * self._num_classes_in_batch]
if len(batch) > 0:
yield batch
def __len__(self):
class_batch_size = self._batch_size // self._num_classes_in_batch
return min(((len(s) + class_batch_size - 1) // class_batch_size) for s in self._samplers)