indic / TTS /tts /datasets /dataset.py
azamat's picture
Init
6127b48
raw
history blame
29.8 kB
import collections
import os
import random
from typing import Dict, List, Union
import numpy as np
import torch
import tqdm
from torch.utils.data import Dataset
from TTS.tts.utils.data import prepare_data, prepare_stop_target, prepare_tensor
from TTS.utils.audio import AudioProcessor
# to prevent too many open files error as suggested here
# https://github.com/pytorch/pytorch/issues/11201#issuecomment-421146936
torch.multiprocessing.set_sharing_strategy("file_system")
def _parse_sample(item):
language_name = None
attn_file = None
if len(item) == 5:
text, wav_file, speaker_name, language_name, attn_file = item
elif len(item) == 4:
text, wav_file, speaker_name, language_name = item
elif len(item) == 3:
text, wav_file, speaker_name = item
else:
raise ValueError(" [!] Dataset cannot parse the sample.")
return text, wav_file, speaker_name, language_name, attn_file
def noise_augment_audio(wav):
return wav + (1.0 / 32768.0) * np.random.rand(*wav.shape)
class TTSDataset(Dataset):
def __init__(
self,
outputs_per_step: int = 1,
compute_linear_spec: bool = False,
ap: AudioProcessor = None,
samples: List[Dict] = None,
tokenizer: "TTSTokenizer" = None,
compute_f0: bool = False,
f0_cache_path: str = None,
return_wav: bool = False,
batch_group_size: int = 0,
min_text_len: int = 0,
max_text_len: int = float("inf"),
min_audio_len: int = 0,
max_audio_len: int = float("inf"),
phoneme_cache_path: str = None,
precompute_num_workers: int = 0,
speaker_id_mapping: Dict = None,
d_vector_mapping: Dict = None,
language_id_mapping: Dict = None,
use_noise_augment: bool = False,
start_by_longest: bool = False,
verbose: bool = False,
):
"""Generic πŸ“‚ data loader for `tts` models. It is configurable for different outputs and needs.
If you need something different, you can subclass and override.
Args:
outputs_per_step (int): Number of time frames predicted per step.
compute_linear_spec (bool): compute linear spectrogram if True.
ap (TTS.tts.utils.AudioProcessor): Audio processor object.
samples (list): List of dataset samples.
tokenizer (TTSTokenizer): tokenizer to convert text to sequence IDs. If None init internally else
use the given. Defaults to None.
compute_f0 (bool): compute f0 if True. Defaults to False.
f0_cache_path (str): Path to store f0 cache. Defaults to None.
return_wav (bool): Return the waveform of the sample. Defaults to False.
batch_group_size (int): Range of batch randomization after sorting
sequences by length. It shuffles each batch with bucketing to gather similar lenght sequences in a
batch. Set 0 to disable. Defaults to 0.
min_text_len (int): Minimum length of input text to be used. All shorter samples will be ignored.
Defaults to 0.
max_text_len (int): Maximum length of input text to be used. All longer samples will be ignored.
Defaults to float("inf").
min_audio_len (int): Minimum length of input audio to be used. All shorter samples will be ignored.
Defaults to 0.
max_audio_len (int): Maximum length of input audio to be used. All longer samples will be ignored.
The maximum length in the dataset defines the VRAM used in the training. Hence, pay attention to
this value if you encounter an OOM error in training. Defaults to float("inf").
phoneme_cache_path (str): Path to cache computed phonemes. It writes phonemes of each sample to a
separate file. Defaults to None.
precompute_num_workers (int): Number of workers to precompute features. Defaults to 0.
speaker_id_mapping (dict): Mapping of speaker names to IDs used to compute embedding vectors by the
embedding layer. Defaults to None.
d_vector_mapping (dict): Mapping of wav files to computed d-vectors. Defaults to None.
use_noise_augment (bool): Enable adding random noise to wav for augmentation. Defaults to False.
start_by_longest (bool): Start by longest sequence. It is especially useful to check OOM. Defaults to False.
verbose (bool): Print diagnostic information. Defaults to false.
"""
super().__init__()
self.batch_group_size = batch_group_size
self._samples = samples
self.outputs_per_step = outputs_per_step
self.compute_linear_spec = compute_linear_spec
self.return_wav = return_wav
self.compute_f0 = compute_f0
self.f0_cache_path = f0_cache_path
self.min_audio_len = min_audio_len
self.max_audio_len = max_audio_len
self.min_text_len = min_text_len
self.max_text_len = max_text_len
self.ap = ap
self.phoneme_cache_path = phoneme_cache_path
self.speaker_id_mapping = speaker_id_mapping
self.d_vector_mapping = d_vector_mapping
self.language_id_mapping = language_id_mapping
self.use_noise_augment = use_noise_augment
self.start_by_longest = start_by_longest
self.verbose = verbose
self.rescue_item_idx = 1
self.pitch_computed = False
self.tokenizer = tokenizer
if self.tokenizer.use_phonemes:
self.phoneme_dataset = PhonemeDataset(
self.samples, self.tokenizer, phoneme_cache_path, precompute_num_workers=precompute_num_workers
)
if compute_f0:
self.f0_dataset = F0Dataset(
self.samples, self.ap, cache_path=f0_cache_path, precompute_num_workers=precompute_num_workers
)
if self.verbose:
self.print_logs()
@property
def lengths(self):
lens = []
for item in self.samples:
_, wav_file, *_ = _parse_sample(item)
audio_len = os.path.getsize(wav_file) / 16 * 8 # assuming 16bit audio
lens.append(audio_len)
return lens
@property
def samples(self):
return self._samples
@samples.setter
def samples(self, new_samples):
self._samples = new_samples
if hasattr(self, "f0_dataset"):
self.f0_dataset.samples = new_samples
if hasattr(self, "phoneme_dataset"):
self.phoneme_dataset.samples = new_samples
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
return self.load_data(idx)
def print_logs(self, level: int = 0) -> None:
indent = "\t" * level
print("\n")
print(f"{indent}> DataLoader initialization")
print(f"{indent}| > Tokenizer:")
self.tokenizer.print_logs(level + 1)
print(f"{indent}| > Number of instances : {len(self.samples)}")
def load_wav(self, filename):
waveform = self.ap.load_wav(filename)
assert waveform.size > 0
return waveform
def get_phonemes(self, idx, text):
out_dict = self.phoneme_dataset[idx]
assert text == out_dict["text"], f"{text} != {out_dict['text']}"
assert len(out_dict["token_ids"]) > 0
return out_dict
def get_f0(self, idx):
out_dict = self.f0_dataset[idx]
item = self.samples[idx]
assert item["audio_file"] == out_dict["audio_file"]
return out_dict
@staticmethod
def get_attn_mask(attn_file):
return np.load(attn_file)
def get_token_ids(self, idx, text):
if self.tokenizer.use_phonemes:
token_ids = self.get_phonemes(idx, text)["token_ids"]
else:
token_ids = self.tokenizer.text_to_ids(text)
return np.array(token_ids, dtype=np.int32)
def load_data(self, idx):
item = self.samples[idx]
raw_text = item["text"]
wav = np.asarray(self.load_wav(item["audio_file"]), dtype=np.float32)
# apply noise for augmentation
if self.use_noise_augment:
wav = noise_augment_audio(wav)
# get token ids
token_ids = self.get_token_ids(idx, item["text"])
# get pre-computed attention maps
attn = None
if "alignment_file" in item:
attn = self.get_attn_mask(item["alignment_file"])
# after phonemization the text length may change
# this is a shareful 🀭 hack to prevent longer phonemes
# TODO: find a better fix
if len(token_ids) > self.max_text_len or len(wav) < self.min_audio_len:
self.rescue_item_idx += 1
return self.load_data(self.rescue_item_idx)
# get f0 values
f0 = None
if self.compute_f0:
f0 = self.get_f0(idx)["f0"]
sample = {
"raw_text": raw_text,
"token_ids": token_ids,
"wav": wav,
"pitch": f0,
"attn": attn,
"item_idx": item["audio_file"],
"speaker_name": item["speaker_name"],
"language_name": item["language"],
"wav_file_name": os.path.basename(item["audio_file"]),
}
return sample
@staticmethod
def _compute_lengths(samples):
new_samples = []
for item in samples:
audio_length = os.path.getsize(item["audio_file"]) / 16 * 8 # assuming 16bit audio
text_lenght = len(item["text"])
item["audio_length"] = audio_length
item["text_length"] = text_lenght
new_samples += [item]
return new_samples
@staticmethod
def filter_by_length(lengths: List[int], min_len: int, max_len: int):
idxs = np.argsort(lengths) # ascending order
ignore_idx = []
keep_idx = []
for idx in idxs:
length = lengths[idx]
if length < min_len or length > max_len:
ignore_idx.append(idx)
else:
keep_idx.append(idx)
return ignore_idx, keep_idx
@staticmethod
def sort_by_length(samples: List[List]):
audio_lengths = [s["audio_length"] for s in samples]
idxs = np.argsort(audio_lengths) # ascending order
return idxs
@staticmethod
def create_buckets(samples, batch_group_size: int):
assert batch_group_size > 0
for i in range(len(samples) // batch_group_size):
offset = i * batch_group_size
end_offset = offset + batch_group_size
temp_items = samples[offset:end_offset]
random.shuffle(temp_items)
samples[offset:end_offset] = temp_items
return samples
@staticmethod
def _select_samples_by_idx(idxs, samples):
samples_new = []
for idx in idxs:
samples_new.append(samples[idx])
return samples_new
def preprocess_samples(self):
r"""Sort `items` based on text length or audio length in ascending order. Filter out samples out or the length
range.
"""
samples = self._compute_lengths(self.samples)
# sort items based on the sequence length in ascending order
text_lengths = [i["text_length"] for i in samples]
audio_lengths = [i["audio_length"] for i in samples]
text_ignore_idx, text_keep_idx = self.filter_by_length(text_lengths, self.min_text_len, self.max_text_len)
audio_ignore_idx, audio_keep_idx = self.filter_by_length(audio_lengths, self.min_audio_len, self.max_audio_len)
keep_idx = list(set(audio_keep_idx) & set(text_keep_idx))
ignore_idx = list(set(audio_ignore_idx) | set(text_ignore_idx))
samples = self._select_samples_by_idx(keep_idx, samples)
sorted_idxs = self.sort_by_length(samples)
if self.start_by_longest:
longest_idxs = sorted_idxs[-1]
sorted_idxs[-1] = sorted_idxs[0]
sorted_idxs[0] = longest_idxs
samples = self._select_samples_by_idx(sorted_idxs, samples)
if len(samples) == 0:
raise RuntimeError(" [!] No samples left")
# shuffle batch groups
# create batches with similar length items
# the larger the `batch_group_size`, the higher the length variety in a batch.
if self.batch_group_size > 0:
samples = self.create_buckets(samples, self.batch_group_size)
# update items to the new sorted items
audio_lengths = [s["audio_length"] for s in samples]
text_lengths = [s["text_length"] for s in samples]
self.samples = samples
if self.verbose:
print(" | > Preprocessing samples")
print(" | > Max text length: {}".format(np.max(text_lengths)))
print(" | > Min text length: {}".format(np.min(text_lengths)))
print(" | > Avg text length: {}".format(np.mean(text_lengths)))
print(" | ")
print(" | > Max audio length: {}".format(np.max(audio_lengths)))
print(" | > Min audio length: {}".format(np.min(audio_lengths)))
print(" | > Avg audio length: {}".format(np.mean(audio_lengths)))
print(f" | > Num. instances discarded samples: {len(ignore_idx)}")
print(" | > Batch group size: {}.".format(self.batch_group_size))
@staticmethod
def _sort_batch(batch, text_lengths):
"""Sort the batch by the input text length for RNN efficiency.
Args:
batch (Dict): Batch returned by `__getitem__`.
text_lengths (List[int]): Lengths of the input character sequences.
"""
text_lengths, ids_sorted_decreasing = torch.sort(torch.LongTensor(text_lengths), dim=0, descending=True)
batch = [batch[idx] for idx in ids_sorted_decreasing]
return batch, text_lengths, ids_sorted_decreasing
def collate_fn(self, batch):
r"""
Perform preprocessing and create a final data batch:
1. Sort batch instances by text-length
2. Convert Audio signal to features.
3. PAD sequences wrt r.
4. Load to Torch.
"""
# Puts each data field into a tensor with outer dimension batch size
if isinstance(batch[0], collections.abc.Mapping):
token_ids_lengths = np.array([len(d["token_ids"]) for d in batch])
# sort items with text input length for RNN efficiency
batch, token_ids_lengths, ids_sorted_decreasing = self._sort_batch(batch, token_ids_lengths)
# convert list of dicts to dict of lists
batch = {k: [dic[k] for dic in batch] for k in batch[0]}
# get language ids from language names
if self.language_id_mapping is not None:
language_ids = [self.language_id_mapping[ln] for ln in batch["language_name"]]
else:
language_ids = None
# get pre-computed d-vectors
if self.d_vector_mapping is not None:
wav_files_names = list(batch["wav_file_name"])
d_vectors = [self.d_vector_mapping[w]["embedding"] for w in wav_files_names]
else:
d_vectors = None
# get numerical speaker ids from speaker names
if self.speaker_id_mapping:
speaker_ids = [self.speaker_id_mapping[sn] for sn in batch["speaker_name"]]
else:
speaker_ids = None
# compute features
mel = [self.ap.melspectrogram(w).astype("float32") for w in batch["wav"]]
mel_lengths = [m.shape[1] for m in mel]
# lengths adjusted by the reduction factor
mel_lengths_adjusted = [
m.shape[1] + (self.outputs_per_step - (m.shape[1] % self.outputs_per_step))
if m.shape[1] % self.outputs_per_step
else m.shape[1]
for m in mel
]
# compute 'stop token' targets
stop_targets = [np.array([0.0] * (mel_len - 1) + [1.0]) for mel_len in mel_lengths]
# PAD stop targets
stop_targets = prepare_stop_target(stop_targets, self.outputs_per_step)
# PAD sequences with longest instance in the batch
token_ids = prepare_data(batch["token_ids"]).astype(np.int32)
# PAD features with longest instance
mel = prepare_tensor(mel, self.outputs_per_step)
# B x D x T --> B x T x D
mel = mel.transpose(0, 2, 1)
# convert things to pytorch
token_ids_lengths = torch.LongTensor(token_ids_lengths)
token_ids = torch.LongTensor(token_ids)
mel = torch.FloatTensor(mel).contiguous()
mel_lengths = torch.LongTensor(mel_lengths)
stop_targets = torch.FloatTensor(stop_targets)
# speaker vectors
if d_vectors is not None:
d_vectors = torch.FloatTensor(d_vectors)
if speaker_ids is not None:
speaker_ids = torch.LongTensor(speaker_ids)
if language_ids is not None:
language_ids = torch.LongTensor(language_ids)
# compute linear spectrogram
linear = None
if self.compute_linear_spec:
linear = [self.ap.spectrogram(w).astype("float32") for w in batch["wav"]]
linear = prepare_tensor(linear, self.outputs_per_step)
linear = linear.transpose(0, 2, 1)
assert mel.shape[1] == linear.shape[1]
linear = torch.FloatTensor(linear).contiguous()
# format waveforms
wav_padded = None
if self.return_wav:
wav_lengths = [w.shape[0] for w in batch["wav"]]
max_wav_len = max(mel_lengths_adjusted) * self.ap.hop_length
wav_lengths = torch.LongTensor(wav_lengths)
wav_padded = torch.zeros(len(batch["wav"]), 1, max_wav_len)
for i, w in enumerate(batch["wav"]):
mel_length = mel_lengths_adjusted[i]
w = np.pad(w, (0, self.ap.hop_length * self.outputs_per_step), mode="edge")
w = w[: mel_length * self.ap.hop_length]
wav_padded[i, :, : w.shape[0]] = torch.from_numpy(w)
wav_padded.transpose_(1, 2)
# format F0
if self.compute_f0:
pitch = prepare_data(batch["pitch"])
assert mel.shape[1] == pitch.shape[1], f"[!] {mel.shape} vs {pitch.shape}"
pitch = torch.FloatTensor(pitch)[:, None, :].contiguous() # B x 1 xT
else:
pitch = None
# format attention masks
attns = None
if batch["attn"][0] is not None:
attns = [batch["attn"][idx].T for idx in ids_sorted_decreasing]
for idx, attn in enumerate(attns):
pad2 = mel.shape[1] - attn.shape[1]
pad1 = token_ids.shape[1] - attn.shape[0]
assert pad1 >= 0 and pad2 >= 0, f"[!] Negative padding - {pad1} and {pad2}"
attn = np.pad(attn, [[0, pad1], [0, pad2]])
attns[idx] = attn
attns = prepare_tensor(attns, self.outputs_per_step)
attns = torch.FloatTensor(attns).unsqueeze(1)
return {
"token_id": token_ids,
"token_id_lengths": token_ids_lengths,
"speaker_names": batch["speaker_name"],
"linear": linear,
"mel": mel,
"mel_lengths": mel_lengths,
"stop_targets": stop_targets,
"item_idxs": batch["item_idx"],
"d_vectors": d_vectors,
"speaker_ids": speaker_ids,
"attns": attns,
"waveform": wav_padded,
"raw_text": batch["raw_text"],
"pitch": pitch,
"language_ids": language_ids,
}
raise TypeError(
(
"batch must contain tensors, numbers, dicts or lists;\
found {}".format(
type(batch[0])
)
)
)
class PhonemeDataset(Dataset):
"""Phoneme Dataset for converting input text to phonemes and then token IDs
At initialization, it pre-computes the phonemes under `cache_path` and loads them in training to reduce data
loading latency. If `cache_path` is already present, it skips the pre-computation.
Args:
samples (Union[List[List], List[Dict]]):
List of samples. Each sample is a list or a dict.
tokenizer (TTSTokenizer):
Tokenizer to convert input text to phonemes.
cache_path (str):
Path to cache phonemes. If `cache_path` is already present or None, it skips the pre-computation.
precompute_num_workers (int):
Number of workers used for pre-computing the phonemes. Defaults to 0.
"""
def __init__(
self,
samples: Union[List[Dict], List[List]],
tokenizer: "TTSTokenizer",
cache_path: str,
precompute_num_workers=0,
):
self.samples = samples
self.tokenizer = tokenizer
self.cache_path = cache_path
if cache_path is not None and not os.path.exists(cache_path):
os.makedirs(cache_path)
self.precompute(precompute_num_workers)
def __getitem__(self, index):
item = self.samples[index]
ids = self.compute_or_load(item["audio_file"], item["text"])
ph_hat = self.tokenizer.ids_to_text(ids)
return {"text": item["text"], "ph_hat": ph_hat, "token_ids": ids, "token_ids_len": len(ids)}
def __len__(self):
return len(self.samples)
def compute_or_load(self, wav_file, text):
"""Compute phonemes for the given text.
If the phonemes are already cached, load them from cache.
"""
file_name = os.path.splitext(os.path.basename(wav_file))[0]
file_ext = "_phoneme.npy"
cache_path = os.path.join(self.cache_path, file_name + file_ext)
try:
ids = np.load(cache_path)
except FileNotFoundError:
ids = self.tokenizer.text_to_ids(text)
np.save(cache_path, ids)
return ids
def get_pad_id(self):
"""Get pad token ID for sequence padding"""
return self.tokenizer.pad_id
def precompute(self, num_workers=1):
"""Precompute phonemes for all samples.
We use pytorch dataloader because we are lazy.
"""
print("[*] Pre-computing phonemes...")
with tqdm.tqdm(total=len(self)) as pbar:
batch_size = num_workers if num_workers > 0 else 1
dataloder = torch.utils.data.DataLoader(
batch_size=batch_size, dataset=self, shuffle=False, num_workers=num_workers, collate_fn=self.collate_fn
)
for _ in dataloder:
pbar.update(batch_size)
def collate_fn(self, batch):
ids = [item["token_ids"] for item in batch]
ids_lens = [item["token_ids_len"] for item in batch]
texts = [item["text"] for item in batch]
texts_hat = [item["ph_hat"] for item in batch]
ids_lens_max = max(ids_lens)
ids_torch = torch.LongTensor(len(ids), ids_lens_max).fill_(self.get_pad_id())
for i, ids_len in enumerate(ids_lens):
ids_torch[i, :ids_len] = torch.LongTensor(ids[i])
return {"text": texts, "ph_hat": texts_hat, "token_ids": ids_torch}
def print_logs(self, level: int = 0) -> None:
indent = "\t" * level
print("\n")
print(f"{indent}> PhonemeDataset ")
print(f"{indent}| > Tokenizer:")
self.tokenizer.print_logs(level + 1)
print(f"{indent}| > Number of instances : {len(self.samples)}")
class F0Dataset:
"""F0 Dataset for computing F0 from wav files in CPU
Pre-compute F0 values for all the samples at initialization if `cache_path` is not None or already present. It
also computes the mean and std of F0 values if `normalize_f0` is True.
Args:
samples (Union[List[List], List[Dict]]):
List of samples. Each sample is a list or a dict.
ap (AudioProcessor):
AudioProcessor to compute F0 from wav files.
cache_path (str):
Path to cache F0 values. If `cache_path` is already present or None, it skips the pre-computation.
Defaults to None.
precompute_num_workers (int):
Number of workers used for pre-computing the F0 values. Defaults to 0.
normalize_f0 (bool):
Whether to normalize F0 values by mean and std. Defaults to True.
"""
def __init__(
self,
samples: Union[List[List], List[Dict]],
ap: "AudioProcessor",
verbose=False,
cache_path: str = None,
precompute_num_workers=0,
normalize_f0=True,
):
self.samples = samples
self.ap = ap
self.verbose = verbose
self.cache_path = cache_path
self.normalize_f0 = normalize_f0
self.pad_id = 0.0
self.mean = None
self.std = None
if cache_path is not None and not os.path.exists(cache_path):
os.makedirs(cache_path)
self.precompute(precompute_num_workers)
if normalize_f0:
self.load_stats(cache_path)
def __getitem__(self, idx):
item = self.samples[idx]
f0 = self.compute_or_load(item["audio_file"])
if self.normalize_f0:
assert self.mean is not None and self.std is not None, " [!] Mean and STD is not available"
f0 = self.normalize(f0)
return {"audio_file": item["audio_file"], "f0": f0}
def __len__(self):
return len(self.samples)
def precompute(self, num_workers=0):
print("[*] Pre-computing F0s...")
with tqdm.tqdm(total=len(self)) as pbar:
batch_size = num_workers if num_workers > 0 else 1
# we do not normalize at preproessing
normalize_f0 = self.normalize_f0
self.normalize_f0 = False
dataloder = torch.utils.data.DataLoader(
batch_size=batch_size, dataset=self, shuffle=False, num_workers=num_workers, collate_fn=self.collate_fn
)
computed_data = []
for batch in dataloder:
f0 = batch["f0"]
computed_data.append(f for f in f0)
pbar.update(batch_size)
self.normalize_f0 = normalize_f0
if self.normalize_f0:
computed_data = [tensor for batch in computed_data for tensor in batch] # flatten
pitch_mean, pitch_std = self.compute_pitch_stats(computed_data)
pitch_stats = {"mean": pitch_mean, "std": pitch_std}
np.save(os.path.join(self.cache_path, "pitch_stats"), pitch_stats, allow_pickle=True)
def get_pad_id(self):
return self.pad_id
@staticmethod
def create_pitch_file_path(wav_file, cache_path):
file_name = os.path.splitext(os.path.basename(wav_file))[0]
pitch_file = os.path.join(cache_path, file_name + "_pitch.npy")
return pitch_file
@staticmethod
def _compute_and_save_pitch(ap, wav_file, pitch_file=None):
wav = ap.load_wav(wav_file)
pitch = ap.compute_f0(wav)
if pitch_file:
np.save(pitch_file, pitch)
return pitch
@staticmethod
def compute_pitch_stats(pitch_vecs):
nonzeros = np.concatenate([v[np.where(v != 0.0)[0]] for v in pitch_vecs])
mean, std = np.mean(nonzeros), np.std(nonzeros)
return mean, std
def load_stats(self, cache_path):
stats_path = os.path.join(cache_path, "pitch_stats.npy")
stats = np.load(stats_path, allow_pickle=True).item()
self.mean = stats["mean"].astype(np.float32)
self.std = stats["std"].astype(np.float32)
def normalize(self, pitch):
zero_idxs = np.where(pitch == 0.0)[0]
pitch = pitch - self.mean
pitch = pitch / self.std
pitch[zero_idxs] = 0.0
return pitch
def denormalize(self, pitch):
zero_idxs = np.where(pitch == 0.0)[0]
pitch *= self.std
pitch += self.mean
pitch[zero_idxs] = 0.0
return pitch
def compute_or_load(self, wav_file):
"""
compute pitch and return a numpy array of pitch values
"""
pitch_file = self.create_pitch_file_path(wav_file, self.cache_path)
if not os.path.exists(pitch_file):
pitch = self._compute_and_save_pitch(self.ap, wav_file, pitch_file)
else:
pitch = np.load(pitch_file)
return pitch.astype(np.float32)
def collate_fn(self, batch):
audio_file = [item["audio_file"] for item in batch]
f0s = [item["f0"] for item in batch]
f0_lens = [len(item["f0"]) for item in batch]
f0_lens_max = max(f0_lens)
f0s_torch = torch.LongTensor(len(f0s), f0_lens_max).fill_(self.get_pad_id())
for i, f0_len in enumerate(f0_lens):
f0s_torch[i, :f0_len] = torch.LongTensor(f0s[i])
return {"audio_file": audio_file, "f0": f0s_torch, "f0_lens": f0_lens}
def print_logs(self, level: int = 0) -> None:
indent = "\t" * level
print("\n")
print(f"{indent}> F0Dataset ")
print(f"{indent}| > Number of instances : {len(self.samples)}")