indic / TTS /tts /datasets /formatters.py
azamat's picture
Init
6127b48
raw
history blame
23.4 kB
import os
import re
import xml.etree.ElementTree as ET
from glob import glob
from pathlib import Path
from typing import List
import pandas as pd
from tqdm import tqdm
########################
# DATASETS
########################
def coqui(root_path, meta_file, ignored_speakers=None):
"""Interal dataset formatter."""
metadata = pd.read_csv(os.path.join(root_path, meta_file), sep="|")
assert all(x in metadata.columns for x in ["audio_file", "text"])
speaker_name = None if "speaker_name" in metadata.columns else "coqui"
emotion_name = None if "emotion_name" in metadata.columns else "neutral"
items = []
not_found_counter = 0
for row in metadata.itertuples():
if speaker_name is None and ignored_speakers is not None and row.speaker_name in ignored_speakers:
continue
audio_path = os.path.join(root_path, row.audio_file)
if not os.path.exists(audio_path):
not_found_counter += 1
continue
items.append(
{
"text": row.text,
"audio_file": audio_path,
"speaker_name": speaker_name if speaker_name is not None else row.speaker_name,
"emotion_name": emotion_name if emotion_name is not None else row.emotion_name,
}
)
if not_found_counter > 0:
print(f" | > [!] {not_found_counter} files not found")
return items
def tweb(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalize TWEB dataset.
https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset
"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "tweb"
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("\t")
wav_file = os.path.join(root_path, cols[0] + ".wav")
text = cols[1]
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def mozilla(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes Mozilla meta data files to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "mozilla"
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = cols[1].strip()
text = cols[0].strip()
wav_file = os.path.join(root_path, "wavs", wav_file)
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def mozilla_de(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes Mozilla meta data files to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "mozilla"
with open(txt_file, "r", encoding="ISO 8859-1") as ttf:
for line in ttf:
cols = line.strip().split("|")
wav_file = cols[0].strip()
text = cols[1].strip()
folder_name = f"BATCH_{wav_file.split('_')[0]}_FINAL"
wav_file = os.path.join(root_path, folder_name, wav_file)
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def mailabs(root_path, meta_files=None, ignored_speakers=None):
"""Normalizes M-AI-Labs meta data files to TTS format
Args:
root_path (str): root folder of the MAILAB language folder.
meta_files (str): list of meta files to be used in the training. If None, finds all the csv files
recursively. Defaults to None
"""
speaker_regex = re.compile("by_book/(male|female)/(?P<speaker_name>[^/]+)/")
if not meta_files:
csv_files = glob(root_path + "/**/metadata.csv", recursive=True)
else:
csv_files = meta_files
# meta_files = [f.strip() for f in meta_files.split(",")]
items = []
for csv_file in csv_files:
if os.path.isfile(csv_file):
txt_file = csv_file
else:
txt_file = os.path.join(root_path, csv_file)
folder = os.path.dirname(txt_file)
# determine speaker based on folder structure...
speaker_name_match = speaker_regex.search(txt_file)
if speaker_name_match is None:
continue
speaker_name = speaker_name_match.group("speaker_name")
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker_name in ignored_speakers:
continue
print(" | > {}".format(csv_file))
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
if not meta_files:
wav_file = os.path.join(folder, "wavs", cols[0] + ".wav")
else:
wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav")
if os.path.isfile(wav_file):
text = cols[1].strip()
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
else:
# M-AI-Labs have some missing samples, so just print the warning
print("> File %s does not exist!" % (wav_file))
return items
def ljspeech(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes the LJSpeech meta data file to TTS format
https://keithito.com/LJ-Speech-Dataset/"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "ljspeech"
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
text = cols[2]
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def ljspeech_test(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes the LJSpeech meta data file for TTS testing
https://keithito.com/LJ-Speech-Dataset/"""
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, "r", encoding="utf-8") as ttf:
speaker_id = 0
for idx, line in enumerate(ttf):
# 2 samples per speaker to avoid eval split issues
if idx % 2 == 0:
speaker_id += 1
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
text = cols[2]
items.append({"text": text, "audio_file": wav_file, "speaker_name": f"ljspeech-{speaker_id}"})
return items
def thorsten(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes the thorsten meta data file to TTS format
https://github.com/thorstenMueller/deep-learning-german-tts/"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "thorsten"
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
text = cols[1]
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def sam_accenture(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes the sam-accenture meta data file to TTS format
https://github.com/Sam-Accenture-Non-Binary-Voice/non-binary-voice-files"""
xml_file = os.path.join(root_path, "voice_over_recordings", meta_file)
xml_root = ET.parse(xml_file).getroot()
items = []
speaker_name = "sam_accenture"
for item in xml_root.findall("./fileid"):
text = item.text
wav_file = os.path.join(root_path, "vo_voice_quality_transformation", item.get("id") + ".wav")
if not os.path.exists(wav_file):
print(f" [!] {wav_file} in metafile does not exist. Skipping...")
continue
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def ruslan(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes the RUSLAN meta data file to TTS format
https://ruslan-corpus.github.io/"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "ruslan"
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path, "RUSLAN", cols[0] + ".wav")
text = cols[1]
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def css10(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes the CSS10 dataset file to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "css10"
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path, cols[0])
text = cols[1]
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def nancy(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Normalizes the Nancy meta data file to TTS format"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "nancy"
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
utt_id = line.split()[1]
text = line[line.find('"') + 1 : line.rfind('"') - 1]
wav_file = os.path.join(root_path, "wavn", utt_id + ".wav")
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def common_voice(root_path, meta_file, ignored_speakers=None):
"""Normalize the common voice meta data file to TTS format."""
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
if line.startswith("client_id"):
continue
cols = line.split("\t")
text = cols[2]
speaker_name = cols[0]
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker_name in ignored_speakers:
continue
wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav"))
items.append({"text": text, "audio_file": wav_file, "speaker_name": "MCV_" + speaker_name})
return items
def libri_tts(root_path, meta_files=None, ignored_speakers=None):
"""https://ai.google/tools/datasets/libri-tts/"""
items = []
if not meta_files:
meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True)
else:
if isinstance(meta_files, str):
meta_files = [os.path.join(root_path, meta_files)]
for meta_file in meta_files:
_meta_file = os.path.basename(meta_file).split(".")[0]
with open(meta_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("\t")
file_name = cols[0]
speaker_name, chapter_id, *_ = cols[0].split("_")
_root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}")
wav_file = os.path.join(_root_path, file_name + ".wav")
text = cols[2]
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker_name in ignored_speakers:
continue
items.append({"text": text, "audio_file": wav_file, "speaker_name": f"LTTS_{speaker_name}"})
for item in items:
assert os.path.exists(item["audio_file"]), f" [!] wav files don't exist - {item['audio_file']}"
return items
def custom_turkish(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "turkish-female"
skipped_files = []
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs", cols[0].strip() + ".wav")
if not os.path.exists(wav_file):
skipped_files.append(wav_file)
continue
text = cols[1].strip()
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
print(f" [!] {len(skipped_files)} files skipped. They don't exist...")
return items
# ToDo: add the dataset link when the dataset is released publicly
def brspeech(root_path, meta_file, ignored_speakers=None):
"""BRSpeech 3.0 beta"""
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
if line.startswith("wav_filename"):
continue
cols = line.split("|")
wav_file = os.path.join(root_path, cols[0])
text = cols[2]
speaker_id = cols[3]
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker_id in ignored_speakers:
continue
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_id})
return items
def vctk(root_path, meta_files=None, wavs_path="wav48_silence_trimmed", mic="mic1", ignored_speakers=None):
"""VCTK dataset v0.92.
URL:
https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip
This dataset has 2 recordings per speaker that are annotated with ```mic1``` and ```mic2```.
It is believed that (😄 ) ```mic1``` files are the same as the previous version of the dataset.
mic1:
Audio recorded using an omni-directional microphone (DPA 4035).
Contains very low frequency noises.
This is the same audio released in previous versions of VCTK:
https://doi.org/10.7488/ds/1994
mic2:
Audio recorded using a small diaphragm condenser microphone with
very wide bandwidth (Sennheiser MKH 800).
Two speakers, p280 and p315 had technical issues of the audio
recordings using MKH 800.
"""
file_ext = "flac"
items = []
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
for meta_file in meta_files:
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep)
file_id = txt_file.split(".")[0]
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker_id in ignored_speakers:
continue
with open(meta_file, "r", encoding="utf-8") as file_text:
text = file_text.readlines()[0]
# p280 has no mic2 recordings
if speaker_id == "p280":
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_mic1.{file_ext}")
else:
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_{mic}.{file_ext}")
if os.path.exists(wav_file):
items.append({"text": text, "audio_file": wav_file, "speaker_name": "VCTK_" + speaker_id})
else:
print(f" [!] wav files don't exist - {wav_file}")
return items
def vctk_old(root_path, meta_files=None, wavs_path="wav48", ignored_speakers=None):
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz"""
items = []
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
for meta_file in meta_files:
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep)
file_id = txt_file.split(".")[0]
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker_id in ignored_speakers:
continue
with open(meta_file, "r", encoding="utf-8") as file_text:
text = file_text.readlines()[0]
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav")
items.append({"text": text, "audio_file": wav_file, "speaker_name": "VCTK_old_" + speaker_id})
return items
def synpaflex(root_path, metafiles=None, **kwargs): # pylint: disable=unused-argument
items = []
speaker_name = "synpaflex"
root_path = os.path.join(root_path, "")
wav_files = glob(f"{root_path}**/*.wav", recursive=True)
for wav_file in wav_files:
if os.sep + "wav" + os.sep in wav_file:
txt_file = wav_file.replace("wav", "txt")
else:
txt_file = os.path.join(
os.path.dirname(wav_file), "txt", os.path.basename(wav_file).replace(".wav", ".txt")
)
if os.path.exists(txt_file) and os.path.exists(wav_file):
with open(txt_file, "r", encoding="utf-8") as file_text:
text = file_text.readlines()[0]
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def open_bible(root_path, meta_files="train", ignore_digits_sentences=True, ignored_speakers=None):
"""ToDo: Refer the paper when available"""
items = []
split_dir = meta_files
meta_files = glob(f"{os.path.join(root_path, split_dir)}/**/*.txt", recursive=True)
for meta_file in meta_files:
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep)
file_id = txt_file.split(".")[0]
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker_id in ignored_speakers:
continue
with open(meta_file, "r", encoding="utf-8") as file_text:
text = file_text.readline().replace("\n", "")
# ignore sentences that contains digits
if ignore_digits_sentences and any(map(str.isdigit, text)):
continue
wav_file = os.path.join(root_path, split_dir, speaker_id, file_id + ".flac")
items.append({"text": text, "audio_file": wav_file, "speaker_name": "OB_" + speaker_id})
return items
def mls(root_path, meta_files=None, ignored_speakers=None):
"""http://www.openslr.org/94/"""
items = []
with open(os.path.join(root_path, meta_files), "r", encoding="utf-8") as meta:
for line in meta:
file, text = line.split("\t")
text = text[:-1]
speaker, book, *_ = file.split("_")
wav_file = os.path.join(root_path, os.path.dirname(meta_files), "audio", speaker, book, file + ".wav")
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker in ignored_speakers:
continue
items.append({"text": text, "audio_file": wav_file, "speaker_name": "MLS_" + speaker})
return items
# ======================================== VOX CELEB ===========================================
def voxceleb2(root_path, meta_file=None, **kwargs): # pylint: disable=unused-argument
"""
:param meta_file Used only for consistency with load_tts_samples api
"""
return _voxcel_x(root_path, meta_file, voxcel_idx="2")
def voxceleb1(root_path, meta_file=None, **kwargs): # pylint: disable=unused-argument
"""
:param meta_file Used only for consistency with load_tts_samples api
"""
return _voxcel_x(root_path, meta_file, voxcel_idx="1")
def _voxcel_x(root_path, meta_file, voxcel_idx):
assert voxcel_idx in ["1", "2"]
expected_count = 148_000 if voxcel_idx == "1" else 1_000_000
voxceleb_path = Path(root_path)
cache_to = voxceleb_path / f"metafile_voxceleb{voxcel_idx}.csv"
cache_to.parent.mkdir(exist_ok=True)
# if not exists meta file, crawl recursively for 'wav' files
if meta_file is not None:
with open(str(meta_file), "r", encoding="utf-8") as f:
return [x.strip().split("|") for x in f.readlines()]
elif not cache_to.exists():
cnt = 0
meta_data = []
wav_files = voxceleb_path.rglob("**/*.wav")
for path in tqdm(
wav_files,
desc=f"Building VoxCeleb {voxcel_idx} Meta file ... this needs to be done only once.",
total=expected_count,
):
speaker_id = str(Path(path).parent.parent.stem)
assert speaker_id.startswith("id")
text = None # VoxCel does not provide transciptions, and they are not needed for training the SE
meta_data.append(f"{text}|{path}|voxcel{voxcel_idx}_{speaker_id}\n")
cnt += 1
with open(str(cache_to), "w", encoding="utf-8") as f:
f.write("".join(meta_data))
if cnt < expected_count:
raise ValueError(f"Found too few instances for Voxceleb. Should be around {expected_count}, is: {cnt}")
with open(str(cache_to), "r", encoding="utf-8") as f:
return [x.strip().split("|") for x in f.readlines()]
def emotion(root_path, meta_file, ignored_speakers=None):
"""Generic emotion dataset"""
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
if line.startswith("file_path"):
continue
cols = line.split(",")
wav_file = os.path.join(root_path, cols[0])
speaker_id = cols[1]
emotion_id = cols[2].replace("\n", "")
# ignore speakers
if isinstance(ignored_speakers, list):
if speaker_id in ignored_speakers:
continue
items.append({"audio_file": wav_file, "speaker_name": speaker_id, "emotion_name": emotion_id})
return items
def baker(root_path: str, meta_file: str, **kwargs) -> List[List[str]]: # pylint: disable=unused-argument
"""Normalizes the Baker meta data file to TTS format
Args:
root_path (str): path to the baker dataset
meta_file (str): name of the meta dataset containing names of wav to select and the transcript of the sentence
Returns:
List[List[str]]: List of (text, wav_path, speaker_name) associated with each sentences
"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "baker"
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
wav_name, text = line.rstrip("\n").split("|")
wav_path = os.path.join(root_path, "clips_22", wav_name)
items.append({"text": text, "audio_file": wav_path, "speaker_name": speaker_name})
return items
def kokoro(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
"""Japanese single-speaker dataset from https://github.com/kaiidams/Kokoro-Speech-Dataset"""
txt_file = os.path.join(root_path, meta_file)
items = []
speaker_name = "kokoro"
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
text = cols[2].replace(" ", "")
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items