|
import os |
|
import re |
|
import xml.etree.ElementTree as ET |
|
from glob import glob |
|
from pathlib import Path |
|
from typing import List |
|
|
|
import pandas as pd |
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
|
|
|
|
|
def coqui(root_path, meta_file, ignored_speakers=None): |
|
"""Interal dataset formatter.""" |
|
metadata = pd.read_csv(os.path.join(root_path, meta_file), sep="|") |
|
assert all(x in metadata.columns for x in ["audio_file", "text"]) |
|
speaker_name = None if "speaker_name" in metadata.columns else "coqui" |
|
emotion_name = None if "emotion_name" in metadata.columns else "neutral" |
|
items = [] |
|
not_found_counter = 0 |
|
for row in metadata.itertuples(): |
|
if speaker_name is None and ignored_speakers is not None and row.speaker_name in ignored_speakers: |
|
continue |
|
audio_path = os.path.join(root_path, row.audio_file) |
|
if not os.path.exists(audio_path): |
|
not_found_counter += 1 |
|
continue |
|
items.append( |
|
{ |
|
"text": row.text, |
|
"audio_file": audio_path, |
|
"speaker_name": speaker_name if speaker_name is not None else row.speaker_name, |
|
"emotion_name": emotion_name if emotion_name is not None else row.emotion_name, |
|
} |
|
) |
|
if not_found_counter > 0: |
|
print(f" | > [!] {not_found_counter} files not found") |
|
return items |
|
|
|
|
|
def tweb(root_path, meta_file, **kwargs): |
|
"""Normalize TWEB dataset. |
|
https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset |
|
""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "tweb" |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("\t") |
|
wav_file = os.path.join(root_path, cols[0] + ".wav") |
|
text = cols[1] |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def mozilla(root_path, meta_file, **kwargs): |
|
"""Normalizes Mozilla meta data files to TTS format""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "mozilla" |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("|") |
|
wav_file = cols[1].strip() |
|
text = cols[0].strip() |
|
wav_file = os.path.join(root_path, "wavs", wav_file) |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def mozilla_de(root_path, meta_file, **kwargs): |
|
"""Normalizes Mozilla meta data files to TTS format""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "mozilla" |
|
with open(txt_file, "r", encoding="ISO 8859-1") as ttf: |
|
for line in ttf: |
|
cols = line.strip().split("|") |
|
wav_file = cols[0].strip() |
|
text = cols[1].strip() |
|
folder_name = f"BATCH_{wav_file.split('_')[0]}_FINAL" |
|
wav_file = os.path.join(root_path, folder_name, wav_file) |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def mailabs(root_path, meta_files=None, ignored_speakers=None): |
|
"""Normalizes M-AI-Labs meta data files to TTS format |
|
|
|
Args: |
|
root_path (str): root folder of the MAILAB language folder. |
|
meta_files (str): list of meta files to be used in the training. If None, finds all the csv files |
|
recursively. Defaults to None |
|
""" |
|
speaker_regex = re.compile("by_book/(male|female)/(?P<speaker_name>[^/]+)/") |
|
if not meta_files: |
|
csv_files = glob(root_path + "/**/metadata.csv", recursive=True) |
|
else: |
|
csv_files = meta_files |
|
|
|
|
|
items = [] |
|
for csv_file in csv_files: |
|
if os.path.isfile(csv_file): |
|
txt_file = csv_file |
|
else: |
|
txt_file = os.path.join(root_path, csv_file) |
|
|
|
folder = os.path.dirname(txt_file) |
|
|
|
speaker_name_match = speaker_regex.search(txt_file) |
|
if speaker_name_match is None: |
|
continue |
|
speaker_name = speaker_name_match.group("speaker_name") |
|
|
|
if isinstance(ignored_speakers, list): |
|
if speaker_name in ignored_speakers: |
|
continue |
|
print(" | > {}".format(csv_file)) |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("|") |
|
if not meta_files: |
|
wav_file = os.path.join(folder, "wavs", cols[0] + ".wav") |
|
else: |
|
wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav") |
|
if os.path.isfile(wav_file): |
|
text = cols[1].strip() |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
else: |
|
|
|
print("> File %s does not exist!" % (wav_file)) |
|
return items |
|
|
|
|
|
def ljspeech(root_path, meta_file, **kwargs): |
|
"""Normalizes the LJSpeech meta data file to TTS format |
|
https://keithito.com/LJ-Speech-Dataset/""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "ljspeech" |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("|") |
|
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") |
|
text = cols[2] |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def ljspeech_test(root_path, meta_file, **kwargs): |
|
"""Normalizes the LJSpeech meta data file for TTS testing |
|
https://keithito.com/LJ-Speech-Dataset/""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
speaker_id = 0 |
|
for idx, line in enumerate(ttf): |
|
|
|
if idx % 2 == 0: |
|
speaker_id += 1 |
|
cols = line.split("|") |
|
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") |
|
text = cols[2] |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": f"ljspeech-{speaker_id}"}) |
|
return items |
|
|
|
|
|
def thorsten(root_path, meta_file, **kwargs): |
|
"""Normalizes the thorsten meta data file to TTS format |
|
https://github.com/thorstenMueller/deep-learning-german-tts/""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "thorsten" |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("|") |
|
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") |
|
text = cols[1] |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def sam_accenture(root_path, meta_file, **kwargs): |
|
"""Normalizes the sam-accenture meta data file to TTS format |
|
https://github.com/Sam-Accenture-Non-Binary-Voice/non-binary-voice-files""" |
|
xml_file = os.path.join(root_path, "voice_over_recordings", meta_file) |
|
xml_root = ET.parse(xml_file).getroot() |
|
items = [] |
|
speaker_name = "sam_accenture" |
|
for item in xml_root.findall("./fileid"): |
|
text = item.text |
|
wav_file = os.path.join(root_path, "vo_voice_quality_transformation", item.get("id") + ".wav") |
|
if not os.path.exists(wav_file): |
|
print(f" [!] {wav_file} in metafile does not exist. Skipping...") |
|
continue |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def ruslan(root_path, meta_file, **kwargs): |
|
"""Normalizes the RUSLAN meta data file to TTS format |
|
https://ruslan-corpus.github.io/""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "ruslan" |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("|") |
|
wav_file = os.path.join(root_path, "RUSLAN", cols[0] + ".wav") |
|
text = cols[1] |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def css10(root_path, meta_file, **kwargs): |
|
"""Normalizes the CSS10 dataset file to TTS format""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "css10" |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("|") |
|
wav_file = os.path.join(root_path, cols[0]) |
|
text = cols[1] |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def nancy(root_path, meta_file, **kwargs): |
|
"""Normalizes the Nancy meta data file to TTS format""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "nancy" |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
utt_id = line.split()[1] |
|
text = line[line.find('"') + 1 : line.rfind('"') - 1] |
|
wav_file = os.path.join(root_path, "wavn", utt_id + ".wav") |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def common_voice(root_path, meta_file, ignored_speakers=None): |
|
"""Normalize the common voice meta data file to TTS format.""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
if line.startswith("client_id"): |
|
continue |
|
cols = line.split("\t") |
|
text = cols[2] |
|
speaker_name = cols[0] |
|
|
|
if isinstance(ignored_speakers, list): |
|
if speaker_name in ignored_speakers: |
|
continue |
|
wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav")) |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": "MCV_" + speaker_name}) |
|
return items |
|
|
|
|
|
def libri_tts(root_path, meta_files=None, ignored_speakers=None): |
|
"""https://ai.google/tools/datasets/libri-tts/""" |
|
items = [] |
|
if not meta_files: |
|
meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True) |
|
else: |
|
if isinstance(meta_files, str): |
|
meta_files = [os.path.join(root_path, meta_files)] |
|
|
|
for meta_file in meta_files: |
|
_meta_file = os.path.basename(meta_file).split(".")[0] |
|
with open(meta_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("\t") |
|
file_name = cols[0] |
|
speaker_name, chapter_id, *_ = cols[0].split("_") |
|
_root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}") |
|
wav_file = os.path.join(_root_path, file_name + ".wav") |
|
text = cols[2] |
|
|
|
if isinstance(ignored_speakers, list): |
|
if speaker_name in ignored_speakers: |
|
continue |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": f"LTTS_{speaker_name}"}) |
|
for item in items: |
|
assert os.path.exists(item["audio_file"]), f" [!] wav files don't exist - {item['audio_file']}" |
|
return items |
|
|
|
|
|
def custom_turkish(root_path, meta_file, **kwargs): |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "turkish-female" |
|
skipped_files = [] |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("|") |
|
wav_file = os.path.join(root_path, "wavs", cols[0].strip() + ".wav") |
|
if not os.path.exists(wav_file): |
|
skipped_files.append(wav_file) |
|
continue |
|
text = cols[1].strip() |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
print(f" [!] {len(skipped_files)} files skipped. They don't exist...") |
|
return items |
|
|
|
|
|
|
|
def brspeech(root_path, meta_file, ignored_speakers=None): |
|
"""BRSpeech 3.0 beta""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
if line.startswith("wav_filename"): |
|
continue |
|
cols = line.split("|") |
|
wav_file = os.path.join(root_path, cols[0]) |
|
text = cols[2] |
|
speaker_id = cols[3] |
|
|
|
if isinstance(ignored_speakers, list): |
|
if speaker_id in ignored_speakers: |
|
continue |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_id}) |
|
return items |
|
|
|
|
|
def vctk(root_path, meta_files=None, wavs_path="wav48_silence_trimmed", mic="mic1", ignored_speakers=None): |
|
"""VCTK dataset v0.92. |
|
|
|
URL: |
|
https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip |
|
|
|
This dataset has 2 recordings per speaker that are annotated with ```mic1``` and ```mic2```. |
|
It is believed that (😄 ) ```mic1``` files are the same as the previous version of the dataset. |
|
|
|
mic1: |
|
Audio recorded using an omni-directional microphone (DPA 4035). |
|
Contains very low frequency noises. |
|
This is the same audio released in previous versions of VCTK: |
|
https://doi.org/10.7488/ds/1994 |
|
|
|
mic2: |
|
Audio recorded using a small diaphragm condenser microphone with |
|
very wide bandwidth (Sennheiser MKH 800). |
|
Two speakers, p280 and p315 had technical issues of the audio |
|
recordings using MKH 800. |
|
""" |
|
file_ext = "flac" |
|
items = [] |
|
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True) |
|
for meta_file in meta_files: |
|
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) |
|
file_id = txt_file.split(".")[0] |
|
|
|
if isinstance(ignored_speakers, list): |
|
if speaker_id in ignored_speakers: |
|
continue |
|
with open(meta_file, "r", encoding="utf-8") as file_text: |
|
text = file_text.readlines()[0] |
|
|
|
if speaker_id == "p280": |
|
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_mic1.{file_ext}") |
|
else: |
|
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + f"_{mic}.{file_ext}") |
|
if os.path.exists(wav_file): |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": "VCTK_" + speaker_id}) |
|
else: |
|
print(f" [!] wav files don't exist - {wav_file}") |
|
return items |
|
|
|
|
|
def vctk_old(root_path, meta_files=None, wavs_path="wav48", ignored_speakers=None): |
|
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz""" |
|
items = [] |
|
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True) |
|
for meta_file in meta_files: |
|
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) |
|
file_id = txt_file.split(".")[0] |
|
|
|
if isinstance(ignored_speakers, list): |
|
if speaker_id in ignored_speakers: |
|
continue |
|
with open(meta_file, "r", encoding="utf-8") as file_text: |
|
text = file_text.readlines()[0] |
|
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav") |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": "VCTK_old_" + speaker_id}) |
|
return items |
|
|
|
|
|
def synpaflex(root_path, metafiles=None, **kwargs): |
|
items = [] |
|
speaker_name = "synpaflex" |
|
root_path = os.path.join(root_path, "") |
|
wav_files = glob(f"{root_path}**/*.wav", recursive=True) |
|
for wav_file in wav_files: |
|
if os.sep + "wav" + os.sep in wav_file: |
|
txt_file = wav_file.replace("wav", "txt") |
|
else: |
|
txt_file = os.path.join( |
|
os.path.dirname(wav_file), "txt", os.path.basename(wav_file).replace(".wav", ".txt") |
|
) |
|
if os.path.exists(txt_file) and os.path.exists(wav_file): |
|
with open(txt_file, "r", encoding="utf-8") as file_text: |
|
text = file_text.readlines()[0] |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def open_bible(root_path, meta_files="train", ignore_digits_sentences=True, ignored_speakers=None): |
|
"""ToDo: Refer the paper when available""" |
|
items = [] |
|
split_dir = meta_files |
|
meta_files = glob(f"{os.path.join(root_path, split_dir)}/**/*.txt", recursive=True) |
|
for meta_file in meta_files: |
|
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep) |
|
file_id = txt_file.split(".")[0] |
|
|
|
if isinstance(ignored_speakers, list): |
|
if speaker_id in ignored_speakers: |
|
continue |
|
with open(meta_file, "r", encoding="utf-8") as file_text: |
|
text = file_text.readline().replace("\n", "") |
|
|
|
if ignore_digits_sentences and any(map(str.isdigit, text)): |
|
continue |
|
wav_file = os.path.join(root_path, split_dir, speaker_id, file_id + ".flac") |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": "OB_" + speaker_id}) |
|
return items |
|
|
|
|
|
def mls(root_path, meta_files=None, ignored_speakers=None): |
|
"""http://www.openslr.org/94/""" |
|
items = [] |
|
with open(os.path.join(root_path, meta_files), "r", encoding="utf-8") as meta: |
|
for line in meta: |
|
file, text = line.split("\t") |
|
text = text[:-1] |
|
speaker, book, *_ = file.split("_") |
|
wav_file = os.path.join(root_path, os.path.dirname(meta_files), "audio", speaker, book, file + ".wav") |
|
|
|
if isinstance(ignored_speakers, list): |
|
if speaker in ignored_speakers: |
|
continue |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": "MLS_" + speaker}) |
|
return items |
|
|
|
|
|
|
|
def voxceleb2(root_path, meta_file=None, **kwargs): |
|
""" |
|
:param meta_file Used only for consistency with load_tts_samples api |
|
""" |
|
return _voxcel_x(root_path, meta_file, voxcel_idx="2") |
|
|
|
|
|
def voxceleb1(root_path, meta_file=None, **kwargs): |
|
""" |
|
:param meta_file Used only for consistency with load_tts_samples api |
|
""" |
|
return _voxcel_x(root_path, meta_file, voxcel_idx="1") |
|
|
|
|
|
def _voxcel_x(root_path, meta_file, voxcel_idx): |
|
assert voxcel_idx in ["1", "2"] |
|
expected_count = 148_000 if voxcel_idx == "1" else 1_000_000 |
|
voxceleb_path = Path(root_path) |
|
cache_to = voxceleb_path / f"metafile_voxceleb{voxcel_idx}.csv" |
|
cache_to.parent.mkdir(exist_ok=True) |
|
|
|
|
|
if meta_file is not None: |
|
with open(str(meta_file), "r", encoding="utf-8") as f: |
|
return [x.strip().split("|") for x in f.readlines()] |
|
|
|
elif not cache_to.exists(): |
|
cnt = 0 |
|
meta_data = [] |
|
wav_files = voxceleb_path.rglob("**/*.wav") |
|
for path in tqdm( |
|
wav_files, |
|
desc=f"Building VoxCeleb {voxcel_idx} Meta file ... this needs to be done only once.", |
|
total=expected_count, |
|
): |
|
speaker_id = str(Path(path).parent.parent.stem) |
|
assert speaker_id.startswith("id") |
|
text = None |
|
meta_data.append(f"{text}|{path}|voxcel{voxcel_idx}_{speaker_id}\n") |
|
cnt += 1 |
|
with open(str(cache_to), "w", encoding="utf-8") as f: |
|
f.write("".join(meta_data)) |
|
if cnt < expected_count: |
|
raise ValueError(f"Found too few instances for Voxceleb. Should be around {expected_count}, is: {cnt}") |
|
|
|
with open(str(cache_to), "r", encoding="utf-8") as f: |
|
return [x.strip().split("|") for x in f.readlines()] |
|
|
|
|
|
def emotion(root_path, meta_file, ignored_speakers=None): |
|
"""Generic emotion dataset""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
if line.startswith("file_path"): |
|
continue |
|
cols = line.split(",") |
|
wav_file = os.path.join(root_path, cols[0]) |
|
speaker_id = cols[1] |
|
emotion_id = cols[2].replace("\n", "") |
|
|
|
if isinstance(ignored_speakers, list): |
|
if speaker_id in ignored_speakers: |
|
continue |
|
items.append({"audio_file": wav_file, "speaker_name": speaker_id, "emotion_name": emotion_id}) |
|
return items |
|
|
|
|
|
def baker(root_path: str, meta_file: str, **kwargs) -> List[List[str]]: |
|
"""Normalizes the Baker meta data file to TTS format |
|
|
|
Args: |
|
root_path (str): path to the baker dataset |
|
meta_file (str): name of the meta dataset containing names of wav to select and the transcript of the sentence |
|
Returns: |
|
List[List[str]]: List of (text, wav_path, speaker_name) associated with each sentences |
|
""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "baker" |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
wav_name, text = line.rstrip("\n").split("|") |
|
wav_path = os.path.join(root_path, "clips_22", wav_name) |
|
items.append({"text": text, "audio_file": wav_path, "speaker_name": speaker_name}) |
|
return items |
|
|
|
|
|
def kokoro(root_path, meta_file, **kwargs): |
|
"""Japanese single-speaker dataset from https://github.com/kaiidams/Kokoro-Speech-Dataset""" |
|
txt_file = os.path.join(root_path, meta_file) |
|
items = [] |
|
speaker_name = "kokoro" |
|
with open(txt_file, "r", encoding="utf-8") as ttf: |
|
for line in ttf: |
|
cols = line.split("|") |
|
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav") |
|
text = cols[2].replace(" ", "") |
|
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name}) |
|
return items |
|
|