|
import torch |
|
from torch import nn |
|
|
|
from TTS.tts.layers.generic.res_conv_bn import Conv1dBN, Conv1dBNBlock, ResidualConv1dBNBlock |
|
from TTS.tts.layers.generic.transformer import FFTransformerBlock |
|
from TTS.tts.layers.generic.wavenet import WNBlocks |
|
from TTS.tts.layers.glow_tts.transformer import RelativePositionTransformer |
|
|
|
|
|
class WaveNetDecoder(nn.Module): |
|
"""WaveNet based decoder with a prenet and a postnet. |
|
|
|
prenet: conv1d_1x1 |
|
postnet: 3 x [conv1d_1x1 -> relu] -> conv1d_1x1 |
|
|
|
TODO: Integrate speaker conditioning vector. |
|
|
|
Note: |
|
default wavenet parameters; |
|
params = { |
|
"num_blocks": 12, |
|
"hidden_channels":192, |
|
"kernel_size": 5, |
|
"dilation_rate": 1, |
|
"num_layers": 4, |
|
"dropout_p": 0.05 |
|
} |
|
|
|
Args: |
|
in_channels (int): number of input channels. |
|
out_channels (int): number of output channels. |
|
hidden_channels (int): number of hidden channels for prenet and postnet. |
|
params (dict): dictionary for residual convolutional blocks. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, hidden_channels, c_in_channels, params): |
|
super().__init__() |
|
|
|
self.prenet = torch.nn.Conv1d(in_channels, params["hidden_channels"], 1) |
|
|
|
self.wn = WNBlocks(params["hidden_channels"], c_in_channels=c_in_channels, **params) |
|
|
|
self.postnet = [ |
|
torch.nn.Conv1d(params["hidden_channels"], hidden_channels, 1), |
|
torch.nn.ReLU(), |
|
torch.nn.Conv1d(hidden_channels, hidden_channels, 1), |
|
torch.nn.ReLU(), |
|
torch.nn.Conv1d(hidden_channels, hidden_channels, 1), |
|
torch.nn.ReLU(), |
|
torch.nn.Conv1d(hidden_channels, out_channels, 1), |
|
] |
|
self.postnet = nn.Sequential(*self.postnet) |
|
|
|
def forward(self, x, x_mask=None, g=None): |
|
x = self.prenet(x) * x_mask |
|
x = self.wn(x, x_mask, g) |
|
o = self.postnet(x) * x_mask |
|
return o |
|
|
|
|
|
class RelativePositionTransformerDecoder(nn.Module): |
|
"""Decoder with Relative Positional Transformer. |
|
|
|
Note: |
|
Default params |
|
params={ |
|
'hidden_channels_ffn': 128, |
|
'num_heads': 2, |
|
"kernel_size": 3, |
|
"dropout_p": 0.1, |
|
"num_layers": 8, |
|
"rel_attn_window_size": 4, |
|
"input_length": None |
|
} |
|
|
|
Args: |
|
in_channels (int): number of input channels. |
|
out_channels (int): number of output channels. |
|
hidden_channels (int): number of hidden channels including Transformer layers. |
|
params (dict): dictionary for residual convolutional blocks. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, hidden_channels, params): |
|
|
|
super().__init__() |
|
self.prenet = Conv1dBN(in_channels, hidden_channels, 1, 1) |
|
self.rel_pos_transformer = RelativePositionTransformer(in_channels, out_channels, hidden_channels, **params) |
|
|
|
def forward(self, x, x_mask=None, g=None): |
|
o = self.prenet(x) * x_mask |
|
o = self.rel_pos_transformer(o, x_mask) |
|
return o |
|
|
|
|
|
class FFTransformerDecoder(nn.Module): |
|
"""Decoder with FeedForwardTransformer. |
|
|
|
Default params |
|
params={ |
|
'hidden_channels_ffn': 1024, |
|
'num_heads': 2, |
|
"dropout_p": 0.1, |
|
"num_layers": 6, |
|
} |
|
|
|
Args: |
|
in_channels (int): number of input channels. |
|
out_channels (int): number of output channels. |
|
hidden_channels (int): number of hidden channels including Transformer layers. |
|
params (dict): dictionary for residual convolutional blocks. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, params): |
|
|
|
super().__init__() |
|
self.transformer_block = FFTransformerBlock(in_channels, **params) |
|
self.postnet = nn.Conv1d(in_channels, out_channels, 1) |
|
|
|
def forward(self, x, x_mask=None, g=None): |
|
|
|
x_mask = 1 if x_mask is None else x_mask |
|
o = self.transformer_block(x) * x_mask |
|
o = self.postnet(o) * x_mask |
|
return o |
|
|
|
|
|
class ResidualConv1dBNDecoder(nn.Module): |
|
"""Residual Convolutional Decoder as in the original Speedy Speech paper |
|
|
|
TODO: Integrate speaker conditioning vector. |
|
|
|
Note: |
|
Default params |
|
params = { |
|
"kernel_size": 4, |
|
"dilations": 4 * [1, 2, 4, 8] + [1], |
|
"num_conv_blocks": 2, |
|
"num_res_blocks": 17 |
|
} |
|
|
|
Args: |
|
in_channels (int): number of input channels. |
|
out_channels (int): number of output channels. |
|
hidden_channels (int): number of hidden channels including ResidualConv1dBNBlock layers. |
|
params (dict): dictionary for residual convolutional blocks. |
|
""" |
|
|
|
def __init__(self, in_channels, out_channels, hidden_channels, params): |
|
super().__init__() |
|
self.res_conv_block = ResidualConv1dBNBlock(in_channels, hidden_channels, hidden_channels, **params) |
|
self.post_conv = nn.Conv1d(hidden_channels, hidden_channels, 1) |
|
self.postnet = nn.Sequential( |
|
Conv1dBNBlock( |
|
hidden_channels, hidden_channels, hidden_channels, params["kernel_size"], 1, num_conv_blocks=2 |
|
), |
|
nn.Conv1d(hidden_channels, out_channels, 1), |
|
) |
|
|
|
def forward(self, x, x_mask=None, g=None): |
|
o = self.res_conv_block(x, x_mask) |
|
o = self.post_conv(o) + x |
|
return self.postnet(o) * x_mask |
|
|
|
|
|
class Decoder(nn.Module): |
|
"""Decodes the expanded phoneme encoding into spectrograms |
|
Args: |
|
out_channels (int): number of output channels. |
|
in_hidden_channels (int): input and hidden channels. Model keeps the input channels for the intermediate layers. |
|
decoder_type (str): decoder layer types. 'transformers' or 'residual_conv_bn'. Default 'residual_conv_bn'. |
|
decoder_params (dict): model parameters for specified decoder type. |
|
c_in_channels (int): number of channels for conditional input. |
|
|
|
Shapes: |
|
- input: (B, C, T) |
|
""" |
|
|
|
|
|
def __init__( |
|
self, |
|
out_channels, |
|
in_hidden_channels, |
|
decoder_type="residual_conv_bn", |
|
decoder_params={ |
|
"kernel_size": 4, |
|
"dilations": 4 * [1, 2, 4, 8] + [1], |
|
"num_conv_blocks": 2, |
|
"num_res_blocks": 17, |
|
}, |
|
c_in_channels=0, |
|
): |
|
super().__init__() |
|
|
|
if decoder_type.lower() == "relative_position_transformer": |
|
self.decoder = RelativePositionTransformerDecoder( |
|
in_channels=in_hidden_channels, |
|
out_channels=out_channels, |
|
hidden_channels=in_hidden_channels, |
|
params=decoder_params, |
|
) |
|
elif decoder_type.lower() == "residual_conv_bn": |
|
self.decoder = ResidualConv1dBNDecoder( |
|
in_channels=in_hidden_channels, |
|
out_channels=out_channels, |
|
hidden_channels=in_hidden_channels, |
|
params=decoder_params, |
|
) |
|
elif decoder_type.lower() == "wavenet": |
|
self.decoder = WaveNetDecoder( |
|
in_channels=in_hidden_channels, |
|
out_channels=out_channels, |
|
hidden_channels=in_hidden_channels, |
|
c_in_channels=c_in_channels, |
|
params=decoder_params, |
|
) |
|
elif decoder_type.lower() == "fftransformer": |
|
self.decoder = FFTransformerDecoder(in_hidden_channels, out_channels, decoder_params) |
|
else: |
|
raise ValueError(f"[!] Unknown decoder type - {decoder_type}") |
|
|
|
def forward(self, x, x_mask, g=None): |
|
""" |
|
Args: |
|
x: [B, C, T] |
|
x_mask: [B, 1, T] |
|
g: [B, C_g, 1] |
|
""" |
|
|
|
o = self.decoder(x, x_mask, g) |
|
return o |
|
|