indic / TTS /tts /layers /generic /pos_encoding.py
azamat's picture
Init
6127b48
raw
history blame
2.5 kB
import math
import torch
from torch import nn
class PositionalEncoding(nn.Module):
"""Sinusoidal positional encoding for non-recurrent neural networks.
Implementation based on "Attention Is All You Need"
Args:
channels (int): embedding size
dropout_p (float): dropout rate applied to the output.
max_len (int): maximum sequence length.
use_scale (bool): whether to use a learnable scaling coefficient.
"""
def __init__(self, channels, dropout_p=0.0, max_len=5000, use_scale=False):
super().__init__()
if channels % 2 != 0:
raise ValueError(
"Cannot use sin/cos positional encoding with " "odd channels (got channels={:d})".format(channels)
)
self.max_len = max_len
self.use_scale = use_scale
if use_scale:
self.scale = torch.nn.Parameter(torch.ones(1))
pe = torch.zeros(max_len, channels)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.pow(10000, torch.arange(0, channels, 2).float() / channels)
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
pe = pe.unsqueeze(0).transpose(1, 2)
self.register_buffer("pe", pe)
if dropout_p > 0:
self.dropout = nn.Dropout(p=dropout_p)
self.channels = channels
def forward(self, x, mask=None, first_idx=None, last_idx=None):
"""
Shapes:
x: [B, C, T]
mask: [B, 1, T]
first_idx: int
last_idx: int
"""
x = x * math.sqrt(self.channels)
if first_idx is None:
if self.pe.size(2) < x.size(2):
raise RuntimeError(
f"Sequence is {x.size(2)} but PositionalEncoding is"
f" limited to {self.pe.size(2)}. See max_len argument."
)
if mask is not None:
pos_enc = self.pe[:, :, : x.size(2)] * mask
else:
pos_enc = self.pe[:, :, : x.size(2)]
if self.use_scale:
x = x + self.scale * pos_enc
else:
x = x + pos_enc
else:
if self.use_scale:
x = x + self.scale * self.pe[:, :, first_idx:last_idx]
else:
x = x + self.pe[:, :, first_idx:last_idx]
if hasattr(self, "dropout"):
x = self.dropout(x)
return x