azamat's picture
Init
6127b48
raw
history blame
4.66 kB
import torch
from torch import nn
from TTS.tts.layers.generic.normalization import ActNorm
from TTS.tts.layers.glow_tts.glow import CouplingBlock, InvConvNear
def squeeze(x, x_mask=None, num_sqz=2):
"""GlowTTS squeeze operation
Increase number of channels and reduce number of time steps
by the same factor.
Note:
each 's' is a n-dimensional vector.
``[s1,s2,s3,s4,s5,s6] --> [[s1, s3, s5], [s2, s4, s6]]``
"""
b, c, t = x.size()
t = (t // num_sqz) * num_sqz
x = x[:, :, :t]
x_sqz = x.view(b, c, t // num_sqz, num_sqz)
x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * num_sqz, t // num_sqz)
if x_mask is not None:
x_mask = x_mask[:, :, num_sqz - 1 :: num_sqz]
else:
x_mask = torch.ones(b, 1, t // num_sqz).to(device=x.device, dtype=x.dtype)
return x_sqz * x_mask, x_mask
def unsqueeze(x, x_mask=None, num_sqz=2):
"""GlowTTS unsqueeze operation
Note:
each 's' is a n-dimensional vector.
``[[s1, s3, s5], [s2, s4, s6]] --> [[s1, s3, s5], [s2, s4, s6]]``
"""
b, c, t = x.size()
x_unsqz = x.view(b, num_sqz, c // num_sqz, t)
x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // num_sqz, t * num_sqz)
if x_mask is not None:
x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, num_sqz).view(b, 1, t * num_sqz)
else:
x_mask = torch.ones(b, 1, t * num_sqz).to(device=x.device, dtype=x.dtype)
return x_unsqz * x_mask, x_mask
class Decoder(nn.Module):
"""Stack of Glow Decoder Modules.
::
Squeeze -> ActNorm -> InvertibleConv1x1 -> AffineCoupling -> Unsqueeze
Args:
in_channels (int): channels of input tensor.
hidden_channels (int): hidden decoder channels.
kernel_size (int): Coupling block kernel size. (Wavenet filter kernel size.)
dilation_rate (int): rate to increase dilation by each layer in a decoder block.
num_flow_blocks (int): number of decoder blocks.
num_coupling_layers (int): number coupling layers. (number of wavenet layers.)
dropout_p (float): wavenet dropout rate.
sigmoid_scale (bool): enable/disable sigmoid scaling in coupling layer.
"""
def __init__(
self,
in_channels,
hidden_channels,
kernel_size,
dilation_rate,
num_flow_blocks,
num_coupling_layers,
dropout_p=0.0,
num_splits=4,
num_squeeze=2,
sigmoid_scale=False,
c_in_channels=0,
):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.num_flow_blocks = num_flow_blocks
self.num_coupling_layers = num_coupling_layers
self.dropout_p = dropout_p
self.num_splits = num_splits
self.num_squeeze = num_squeeze
self.sigmoid_scale = sigmoid_scale
self.c_in_channels = c_in_channels
self.flows = nn.ModuleList()
for _ in range(num_flow_blocks):
self.flows.append(ActNorm(channels=in_channels * num_squeeze))
self.flows.append(InvConvNear(channels=in_channels * num_squeeze, num_splits=num_splits))
self.flows.append(
CouplingBlock(
in_channels * num_squeeze,
hidden_channels,
kernel_size=kernel_size,
dilation_rate=dilation_rate,
num_layers=num_coupling_layers,
c_in_channels=c_in_channels,
dropout_p=dropout_p,
sigmoid_scale=sigmoid_scale,
)
)
def forward(self, x, x_mask, g=None, reverse=False):
"""
Shapes:
- x: :math:`[B, C, T]`
- x_mask: :math:`[B, 1 ,T]`
- g: :math:`[B, C]`
"""
if not reverse:
flows = self.flows
logdet_tot = 0
else:
flows = reversed(self.flows)
logdet_tot = None
if self.num_squeeze > 1:
x, x_mask = squeeze(x, x_mask, self.num_squeeze)
for f in flows:
if not reverse:
x, logdet = f(x, x_mask, g=g, reverse=reverse)
logdet_tot += logdet
else:
x, logdet = f(x, x_mask, g=g, reverse=reverse)
if self.num_squeeze > 1:
x, x_mask = unsqueeze(x, x_mask, self.num_squeeze)
return x, logdet_tot
def store_inverse(self):
for f in self.flows:
f.store_inverse()