indic / TTS /tts /layers /losses.py
azamat's picture
Init
6127b48
raw
history blame
34.3 kB
import math
import numpy as np
import torch
from coqpit import Coqpit
from torch import nn
from torch.nn import functional
from TTS.tts.utils.helpers import sequence_mask
from TTS.tts.utils.ssim import ssim
from TTS.utils.audio import TorchSTFT
# pylint: disable=abstract-method
# relates https://github.com/pytorch/pytorch/issues/42305
class L1LossMasked(nn.Module):
def __init__(self, seq_len_norm):
super().__init__()
self.seq_len_norm = seq_len_norm
def forward(self, x, target, length):
"""
Args:
x: A Variable containing a FloatTensor of size
(batch, max_len, dim) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len, dim) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Shapes:
x: B x T X D
target: B x T x D
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
# mask: (batch, max_len, 1)
target.requires_grad = False
mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float()
if self.seq_len_norm:
norm_w = mask / mask.sum(dim=1, keepdim=True)
out_weights = norm_w.div(target.shape[0] * target.shape[2])
mask = mask.expand_as(x)
loss = functional.l1_loss(x * mask, target * mask, reduction="none")
loss = loss.mul(out_weights.to(loss.device)).sum()
else:
mask = mask.expand_as(x)
loss = functional.l1_loss(x * mask, target * mask, reduction="sum")
loss = loss / mask.sum()
return loss
class MSELossMasked(nn.Module):
def __init__(self, seq_len_norm):
super().__init__()
self.seq_len_norm = seq_len_norm
def forward(self, x, target, length):
"""
Args:
x: A Variable containing a FloatTensor of size
(batch, max_len, dim) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len, dim) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Shapes:
- x: :math:`[B, T, D]`
- target: :math:`[B, T, D]`
- length: :math:`B`
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
# mask: (batch, max_len, 1)
target.requires_grad = False
mask = sequence_mask(sequence_length=length, max_len=target.size(1)).unsqueeze(2).float()
if self.seq_len_norm:
norm_w = mask / mask.sum(dim=1, keepdim=True)
out_weights = norm_w.div(target.shape[0] * target.shape[2])
mask = mask.expand_as(x)
loss = functional.mse_loss(x * mask, target * mask, reduction="none")
loss = loss.mul(out_weights.to(loss.device)).sum()
else:
mask = mask.expand_as(x)
loss = functional.mse_loss(x * mask, target * mask, reduction="sum")
loss = loss / mask.sum()
return loss
class SSIMLoss(torch.nn.Module):
"""SSIM loss as explained here https://en.wikipedia.org/wiki/Structural_similarity"""
def __init__(self):
super().__init__()
self.loss_func = ssim
def forward(self, y_hat, y, length=None):
"""
Args:
y_hat (tensor): model prediction values.
y (tensor): target values.
length (tensor): length of each sample in a batch.
Shapes:
y_hat: B x T X D
y: B x T x D
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
if length is not None:
m = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2).float().to(y_hat.device)
y_hat, y = y_hat * m, y * m
return 1 - self.loss_func(y_hat.unsqueeze(1), y.unsqueeze(1))
class AttentionEntropyLoss(nn.Module):
# pylint: disable=R0201
def forward(self, align):
"""
Forces attention to be more decisive by penalizing
soft attention weights
TODO: arguments
TODO: unit_test
"""
entropy = torch.distributions.Categorical(probs=align).entropy()
loss = (entropy / np.log(align.shape[1])).mean()
return loss
class BCELossMasked(nn.Module):
def __init__(self, pos_weight):
super().__init__()
self.pos_weight = pos_weight
def forward(self, x, target, length):
"""
Args:
x: A Variable containing a FloatTensor of size
(batch, max_len) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Shapes:
x: B x T
target: B x T
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
# mask: (batch, max_len, 1)
target.requires_grad = False
if length is not None:
mask = sequence_mask(sequence_length=length, max_len=target.size(1)).float()
x = x * mask
target = target * mask
num_items = mask.sum()
else:
num_items = torch.numel(x)
loss = functional.binary_cross_entropy_with_logits(x, target, pos_weight=self.pos_weight, reduction="sum")
loss = loss / num_items
return loss
class DifferentailSpectralLoss(nn.Module):
"""Differential Spectral Loss
https://arxiv.org/ftp/arxiv/papers/1909/1909.10302.pdf"""
def __init__(self, loss_func):
super().__init__()
self.loss_func = loss_func
def forward(self, x, target, length=None):
"""
Shapes:
x: B x T
target: B x T
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
x_diff = x[:, 1:] - x[:, :-1]
target_diff = target[:, 1:] - target[:, :-1]
if length is None:
return self.loss_func(x_diff, target_diff)
return self.loss_func(x_diff, target_diff, length - 1)
class GuidedAttentionLoss(torch.nn.Module):
def __init__(self, sigma=0.4):
super().__init__()
self.sigma = sigma
def _make_ga_masks(self, ilens, olens):
B = len(ilens)
max_ilen = max(ilens)
max_olen = max(olens)
ga_masks = torch.zeros((B, max_olen, max_ilen))
for idx, (ilen, olen) in enumerate(zip(ilens, olens)):
ga_masks[idx, :olen, :ilen] = self._make_ga_mask(ilen, olen, self.sigma)
return ga_masks
def forward(self, att_ws, ilens, olens):
ga_masks = self._make_ga_masks(ilens, olens).to(att_ws.device)
seq_masks = self._make_masks(ilens, olens).to(att_ws.device)
losses = ga_masks * att_ws
loss = torch.mean(losses.masked_select(seq_masks))
return loss
@staticmethod
def _make_ga_mask(ilen, olen, sigma):
grid_x, grid_y = torch.meshgrid(torch.arange(olen).to(olen), torch.arange(ilen).to(ilen))
grid_x, grid_y = grid_x.float(), grid_y.float()
return 1.0 - torch.exp(-((grid_y / ilen - grid_x / olen) ** 2) / (2 * (sigma**2)))
@staticmethod
def _make_masks(ilens, olens):
in_masks = sequence_mask(ilens)
out_masks = sequence_mask(olens)
return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2)
class Huber(nn.Module):
# pylint: disable=R0201
def forward(self, x, y, length=None):
"""
Shapes:
x: B x T
y: B x T
length: B
"""
mask = sequence_mask(sequence_length=length, max_len=y.size(1)).unsqueeze(2).float()
return torch.nn.functional.smooth_l1_loss(x * mask, y * mask, reduction="sum") / mask.sum()
class ForwardSumLoss(nn.Module):
def __init__(self, blank_logprob=-1):
super().__init__()
self.log_softmax = torch.nn.LogSoftmax(dim=3)
self.ctc_loss = torch.nn.CTCLoss(zero_infinity=True)
self.blank_logprob = blank_logprob
def forward(self, attn_logprob, in_lens, out_lens):
key_lens = in_lens
query_lens = out_lens
attn_logprob_padded = torch.nn.functional.pad(input=attn_logprob, pad=(1, 0), value=self.blank_logprob)
total_loss = 0.0
for bid in range(attn_logprob.shape[0]):
target_seq = torch.arange(1, key_lens[bid] + 1).unsqueeze(0)
curr_logprob = attn_logprob_padded[bid].permute(1, 0, 2)[: query_lens[bid], :, : key_lens[bid] + 1]
curr_logprob = self.log_softmax(curr_logprob[None])[0]
loss = self.ctc_loss(
curr_logprob,
target_seq,
input_lengths=query_lens[bid : bid + 1],
target_lengths=key_lens[bid : bid + 1],
)
total_loss = total_loss + loss
total_loss = total_loss / attn_logprob.shape[0]
return total_loss
########################
# MODEL LOSS LAYERS
########################
class TacotronLoss(torch.nn.Module):
"""Collection of Tacotron set-up based on provided config."""
def __init__(self, c, ga_sigma=0.4):
super().__init__()
self.stopnet_pos_weight = c.stopnet_pos_weight
self.use_capacitron_vae = c.use_capacitron_vae
if self.use_capacitron_vae:
self.capacitron_capacity = c.capacitron_vae.capacitron_capacity
self.capacitron_vae_loss_alpha = c.capacitron_vae.capacitron_VAE_loss_alpha
self.ga_alpha = c.ga_alpha
self.decoder_diff_spec_alpha = c.decoder_diff_spec_alpha
self.postnet_diff_spec_alpha = c.postnet_diff_spec_alpha
self.decoder_alpha = c.decoder_loss_alpha
self.postnet_alpha = c.postnet_loss_alpha
self.decoder_ssim_alpha = c.decoder_ssim_alpha
self.postnet_ssim_alpha = c.postnet_ssim_alpha
self.config = c
# postnet and decoder loss
if c.loss_masking:
self.criterion = L1LossMasked(c.seq_len_norm) if c.model in ["Tacotron"] else MSELossMasked(c.seq_len_norm)
else:
self.criterion = nn.L1Loss() if c.model in ["Tacotron"] else nn.MSELoss()
# guided attention loss
if c.ga_alpha > 0:
self.criterion_ga = GuidedAttentionLoss(sigma=ga_sigma)
# differential spectral loss
if c.postnet_diff_spec_alpha > 0 or c.decoder_diff_spec_alpha > 0:
self.criterion_diff_spec = DifferentailSpectralLoss(loss_func=self.criterion)
# ssim loss
if c.postnet_ssim_alpha > 0 or c.decoder_ssim_alpha > 0:
self.criterion_ssim = SSIMLoss()
# stopnet loss
# pylint: disable=not-callable
self.criterion_st = BCELossMasked(pos_weight=torch.tensor(self.stopnet_pos_weight)) if c.stopnet else None
# For dev pruposes only
self.criterion_capacitron_reconstruction_loss = nn.L1Loss(reduction="sum")
def forward(
self,
postnet_output,
decoder_output,
mel_input,
linear_input,
stopnet_output,
stopnet_target,
stop_target_length,
capacitron_vae_outputs,
output_lens,
decoder_b_output,
alignments,
alignment_lens,
alignments_backwards,
input_lens,
):
# decoder outputs linear or mel spectrograms for Tacotron and Tacotron2
# the target should be set acccordingly
postnet_target = linear_input if self.config.model.lower() in ["tacotron"] else mel_input
return_dict = {}
# remove lengths if no masking is applied
if not self.config.loss_masking:
output_lens = None
# decoder and postnet losses
if self.config.loss_masking:
if self.decoder_alpha > 0:
decoder_loss = self.criterion(decoder_output, mel_input, output_lens)
if self.postnet_alpha > 0:
postnet_loss = self.criterion(postnet_output, postnet_target, output_lens)
else:
if self.decoder_alpha > 0:
decoder_loss = self.criterion(decoder_output, mel_input)
if self.postnet_alpha > 0:
postnet_loss = self.criterion(postnet_output, postnet_target)
loss = self.decoder_alpha * decoder_loss + self.postnet_alpha * postnet_loss
return_dict["decoder_loss"] = decoder_loss
return_dict["postnet_loss"] = postnet_loss
if self.use_capacitron_vae:
# extract capacitron vae infos
posterior_distribution, prior_distribution, beta = capacitron_vae_outputs
# KL divergence term between the posterior and the prior
kl_term = torch.mean(torch.distributions.kl_divergence(posterior_distribution, prior_distribution))
# Limit the mutual information between the data and latent space by the variational capacity limit
kl_capacity = kl_term - self.capacitron_capacity
# pass beta through softplus to keep it positive
beta = torch.nn.functional.softplus(beta)[0]
# This is the term going to the main ADAM optimiser, we detach beta because
# beta is optimised by a separate, SGD optimiser below
capacitron_vae_loss = beta.detach() * kl_capacity
# normalize the capacitron_vae_loss as in L1Loss or MSELoss.
# After this, both the standard loss and capacitron_vae_loss will be in the same scale.
# For this reason we don't need use L1Loss and MSELoss in "sum" reduction mode.
# Note: the batch is not considered because the L1Loss was calculated in "sum" mode
# divided by the batch size, So not dividing the capacitron_vae_loss by B is legitimate.
# get B T D dimension from input
B, T, D = mel_input.size()
# normalize
if self.config.loss_masking:
# if mask loss get T using the mask
T = output_lens.sum() / B
# Only for dev purposes to be able to compare the reconstruction loss with the values in the
# original Capacitron paper
return_dict["capaciton_reconstruction_loss"] = (
self.criterion_capacitron_reconstruction_loss(decoder_output, mel_input) / decoder_output.size(0)
) + kl_capacity
capacitron_vae_loss = capacitron_vae_loss / (T * D)
capacitron_vae_loss = capacitron_vae_loss * self.capacitron_vae_loss_alpha
# This is the term to purely optimise beta and to pass into the SGD optimizer
beta_loss = torch.negative(beta) * kl_capacity.detach()
loss += capacitron_vae_loss
return_dict["capacitron_vae_loss"] = capacitron_vae_loss
return_dict["capacitron_vae_beta_loss"] = beta_loss
return_dict["capacitron_vae_kl_term"] = kl_term
return_dict["capacitron_beta"] = beta
stop_loss = (
self.criterion_st(stopnet_output, stopnet_target, stop_target_length)
if self.config.stopnet
else torch.zeros(1)
)
loss += stop_loss
return_dict["stopnet_loss"] = stop_loss
# backward decoder loss (if enabled)
if self.config.bidirectional_decoder:
if self.config.loss_masking:
decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1,)), mel_input, output_lens)
else:
decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1,)), mel_input)
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1,)), decoder_output)
loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss)
return_dict["decoder_b_loss"] = decoder_b_loss
return_dict["decoder_c_loss"] = decoder_c_loss
# double decoder consistency loss (if enabled)
if self.config.double_decoder_consistency:
if self.config.loss_masking:
decoder_b_loss = self.criterion(decoder_b_output, mel_input, output_lens)
else:
decoder_b_loss = self.criterion(decoder_b_output, mel_input)
# decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output)
attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards)
loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss)
return_dict["decoder_coarse_loss"] = decoder_b_loss
return_dict["decoder_ddc_loss"] = attention_c_loss
# guided attention loss (if enabled)
if self.config.ga_alpha > 0:
ga_loss = self.criterion_ga(alignments, input_lens, alignment_lens)
loss += ga_loss * self.ga_alpha
return_dict["ga_loss"] = ga_loss
# decoder differential spectral loss
if self.config.decoder_diff_spec_alpha > 0:
decoder_diff_spec_loss = self.criterion_diff_spec(decoder_output, mel_input, output_lens)
loss += decoder_diff_spec_loss * self.decoder_diff_spec_alpha
return_dict["decoder_diff_spec_loss"] = decoder_diff_spec_loss
# postnet differential spectral loss
if self.config.postnet_diff_spec_alpha > 0:
postnet_diff_spec_loss = self.criterion_diff_spec(postnet_output, postnet_target, output_lens)
loss += postnet_diff_spec_loss * self.postnet_diff_spec_alpha
return_dict["postnet_diff_spec_loss"] = postnet_diff_spec_loss
# decoder ssim loss
if self.config.decoder_ssim_alpha > 0:
decoder_ssim_loss = self.criterion_ssim(decoder_output, mel_input, output_lens)
loss += decoder_ssim_loss * self.postnet_ssim_alpha
return_dict["decoder_ssim_loss"] = decoder_ssim_loss
# postnet ssim loss
if self.config.postnet_ssim_alpha > 0:
postnet_ssim_loss = self.criterion_ssim(postnet_output, postnet_target, output_lens)
loss += postnet_ssim_loss * self.postnet_ssim_alpha
return_dict["postnet_ssim_loss"] = postnet_ssim_loss
return_dict["loss"] = loss
return return_dict
class GlowTTSLoss(torch.nn.Module):
def __init__(self):
super().__init__()
self.constant_factor = 0.5 * math.log(2 * math.pi)
def forward(self, z, means, scales, log_det, y_lengths, o_dur_log, o_attn_dur, x_lengths):
return_dict = {}
# flow loss - neg log likelihood
pz = torch.sum(scales) + 0.5 * torch.sum(torch.exp(-2 * scales) * (z - means) ** 2)
log_mle = self.constant_factor + (pz - torch.sum(log_det)) / (torch.sum(y_lengths) * z.shape[2])
# duration loss - MSE
loss_dur = torch.sum((o_dur_log - o_attn_dur) ** 2) / torch.sum(x_lengths)
# duration loss - huber loss
# loss_dur = torch.nn.functional.smooth_l1_loss(o_dur_log, o_attn_dur, reduction="sum") / torch.sum(x_lengths)
return_dict["loss"] = log_mle + loss_dur
return_dict["log_mle"] = log_mle
return_dict["loss_dur"] = loss_dur
# check if any loss is NaN
for key, loss in return_dict.items():
if torch.isnan(loss):
raise RuntimeError(f" [!] NaN loss with {key}.")
return return_dict
def mse_loss_custom(x, y):
"""MSE loss using the torch back-end without reduction.
It uses less VRAM than the raw code"""
expanded_x, expanded_y = torch.broadcast_tensors(x, y)
return torch._C._nn.mse_loss(expanded_x, expanded_y, 0) # pylint: disable=protected-access, c-extension-no-member
class MDNLoss(nn.Module):
"""Mixture of Density Network Loss as described in https://arxiv.org/pdf/2003.01950.pdf."""
def forward(self, logp, text_lengths, mel_lengths): # pylint: disable=no-self-use
"""
Shapes:
mu: [B, D, T]
log_sigma: [B, D, T]
mel_spec: [B, D, T]
"""
B, T_seq, T_mel = logp.shape
log_alpha = logp.new_ones(B, T_seq, T_mel) * (-1e4)
log_alpha[:, 0, 0] = logp[:, 0, 0]
for t in range(1, T_mel):
prev_step = torch.cat(
[log_alpha[:, :, t - 1 : t], functional.pad(log_alpha[:, :, t - 1 : t], (0, 0, 1, -1), value=-1e4)],
dim=-1,
)
log_alpha[:, :, t] = torch.logsumexp(prev_step + 1e-4, dim=-1) + logp[:, :, t]
alpha_last = log_alpha[torch.arange(B), text_lengths - 1, mel_lengths - 1]
mdn_loss = -alpha_last.mean() / T_seq
return mdn_loss # , log_prob_matrix
class AlignTTSLoss(nn.Module):
"""Modified AlignTTS Loss.
Computes
- L1 and SSIM losses from output spectrograms.
- Huber loss for duration predictor.
- MDNLoss for Mixture of Density Network.
All loss values are aggregated by a weighted sum of the alpha values.
Args:
c (dict): TTS model configuration.
"""
def __init__(self, c):
super().__init__()
self.mdn_loss = MDNLoss()
self.spec_loss = MSELossMasked(False)
self.ssim = SSIMLoss()
self.dur_loss = MSELossMasked(False)
self.ssim_alpha = c.ssim_alpha
self.dur_loss_alpha = c.dur_loss_alpha
self.spec_loss_alpha = c.spec_loss_alpha
self.mdn_alpha = c.mdn_alpha
def forward(
self, logp, decoder_output, decoder_target, decoder_output_lens, dur_output, dur_target, input_lens, phase
):
# ssim_alpha, dur_loss_alpha, spec_loss_alpha, mdn_alpha = self.set_alphas(step)
spec_loss, ssim_loss, dur_loss, mdn_loss = 0, 0, 0, 0
if phase == 0:
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
elif phase == 1:
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
elif phase == 2:
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
spec_loss = self.spec_lossX(decoder_output, decoder_target, decoder_output_lens)
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
elif phase == 3:
dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens)
else:
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens)
loss = (
self.spec_loss_alpha * spec_loss
+ self.ssim_alpha * ssim_loss
+ self.dur_loss_alpha * dur_loss
+ self.mdn_alpha * mdn_loss
)
return {"loss": loss, "loss_l1": spec_loss, "loss_ssim": ssim_loss, "loss_dur": dur_loss, "mdn_loss": mdn_loss}
class VitsGeneratorLoss(nn.Module):
def __init__(self, c: Coqpit):
super().__init__()
self.kl_loss_alpha = c.kl_loss_alpha
self.gen_loss_alpha = c.gen_loss_alpha
self.feat_loss_alpha = c.feat_loss_alpha
self.dur_loss_alpha = c.dur_loss_alpha
self.mel_loss_alpha = c.mel_loss_alpha
self.spk_encoder_loss_alpha = c.speaker_encoder_loss_alpha
self.stft = TorchSTFT(
c.audio.fft_size,
c.audio.hop_length,
c.audio.win_length,
sample_rate=c.audio.sample_rate,
mel_fmin=c.audio.mel_fmin,
mel_fmax=c.audio.mel_fmax,
n_mels=c.audio.num_mels,
use_mel=True,
do_amp_to_db=True,
)
@staticmethod
def feature_loss(feats_real, feats_generated):
loss = 0
for dr, dg in zip(feats_real, feats_generated):
for rl, gl in zip(dr, dg):
rl = rl.float().detach()
gl = gl.float()
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
@staticmethod
def generator_loss(scores_fake):
loss = 0
gen_losses = []
for dg in scores_fake:
dg = dg.float()
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses
@staticmethod
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
"""
z_p, logs_q: [b, h, t_t]
m_p, logs_p: [b, h, t_t]
"""
z_p = z_p.float()
logs_q = logs_q.float()
m_p = m_p.float()
logs_p = logs_p.float()
z_mask = z_mask.float()
kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
kl = torch.sum(kl * z_mask)
l = kl / torch.sum(z_mask)
return l
@staticmethod
def cosine_similarity_loss(gt_spk_emb, syn_spk_emb):
return -torch.nn.functional.cosine_similarity(gt_spk_emb, syn_spk_emb).mean()
def forward(
self,
mel_slice,
mel_slice_hat,
z_p,
logs_q,
m_p,
logs_p,
z_len,
scores_disc_fake,
feats_disc_fake,
feats_disc_real,
loss_duration,
use_speaker_encoder_as_loss=False,
gt_spk_emb=None,
syn_spk_emb=None,
):
"""
Shapes:
- mel_slice : :math:`[B, 1, T]`
- mel_slice_hat: :math:`[B, 1, T]`
- z_p: :math:`[B, C, T]`
- logs_q: :math:`[B, C, T]`
- m_p: :math:`[B, C, T]`
- logs_p: :math:`[B, C, T]`
- z_len: :math:`[B]`
- scores_disc_fake[i]: :math:`[B, C]`
- feats_disc_fake[i][j]: :math:`[B, C, T', P]`
- feats_disc_real[i][j]: :math:`[B, C, T', P]`
"""
loss = 0.0
return_dict = {}
z_mask = sequence_mask(z_len).float()
# compute losses
loss_kl = (
self.kl_loss(z_p=z_p, logs_q=logs_q, m_p=m_p, logs_p=logs_p, z_mask=z_mask.unsqueeze(1))
* self.kl_loss_alpha
)
loss_feat = (
self.feature_loss(feats_real=feats_disc_real, feats_generated=feats_disc_fake) * self.feat_loss_alpha
)
loss_gen = self.generator_loss(scores_fake=scores_disc_fake)[0] * self.gen_loss_alpha
loss_mel = torch.nn.functional.l1_loss(mel_slice, mel_slice_hat) * self.mel_loss_alpha
loss_duration = torch.sum(loss_duration.float()) * self.dur_loss_alpha
loss = loss_kl + loss_feat + loss_mel + loss_gen + loss_duration
if use_speaker_encoder_as_loss:
loss_se = self.cosine_similarity_loss(gt_spk_emb, syn_spk_emb) * self.spk_encoder_loss_alpha
loss = loss + loss_se
return_dict["loss_spk_encoder"] = loss_se
# pass losses to the dict
return_dict["loss_gen"] = loss_gen
return_dict["loss_kl"] = loss_kl
return_dict["loss_feat"] = loss_feat
return_dict["loss_mel"] = loss_mel
return_dict["loss_duration"] = loss_duration
return_dict["loss"] = loss
return return_dict
class VitsDiscriminatorLoss(nn.Module):
def __init__(self, c: Coqpit):
super().__init__()
self.disc_loss_alpha = c.disc_loss_alpha
@staticmethod
def discriminator_loss(scores_real, scores_fake):
loss = 0
real_losses = []
fake_losses = []
for dr, dg in zip(scores_real, scores_fake):
dr = dr.float()
dg = dg.float()
real_loss = torch.mean((1 - dr) ** 2)
fake_loss = torch.mean(dg**2)
loss += real_loss + fake_loss
real_losses.append(real_loss.item())
fake_losses.append(fake_loss.item())
return loss, real_losses, fake_losses
def forward(self, scores_disc_real, scores_disc_fake):
loss = 0.0
return_dict = {}
loss_disc, loss_disc_real, _ = self.discriminator_loss(
scores_real=scores_disc_real, scores_fake=scores_disc_fake
)
return_dict["loss_disc"] = loss_disc * self.disc_loss_alpha
loss = loss + return_dict["loss_disc"]
return_dict["loss"] = loss
for i, ldr in enumerate(loss_disc_real):
return_dict[f"loss_disc_real_{i}"] = ldr
return return_dict
class ForwardTTSLoss(nn.Module):
"""Generic configurable ForwardTTS loss."""
def __init__(self, c):
super().__init__()
if c.spec_loss_type == "mse":
self.spec_loss = MSELossMasked(False)
elif c.spec_loss_type == "l1":
self.spec_loss = L1LossMasked(False)
else:
raise ValueError(" [!] Unknown spec_loss_type {}".format(c.spec_loss_type))
if c.duration_loss_type == "mse":
self.dur_loss = MSELossMasked(False)
elif c.duration_loss_type == "l1":
self.dur_loss = L1LossMasked(False)
elif c.duration_loss_type == "huber":
self.dur_loss = Huber()
else:
raise ValueError(" [!] Unknown duration_loss_type {}".format(c.duration_loss_type))
if c.model_args.use_aligner:
self.aligner_loss = ForwardSumLoss()
self.aligner_loss_alpha = c.aligner_loss_alpha
if c.model_args.use_pitch:
self.pitch_loss = MSELossMasked(False)
self.pitch_loss_alpha = c.pitch_loss_alpha
if c.use_ssim_loss:
self.ssim = SSIMLoss() if c.use_ssim_loss else None
self.ssim_loss_alpha = c.ssim_loss_alpha
self.spec_loss_alpha = c.spec_loss_alpha
self.dur_loss_alpha = c.dur_loss_alpha
self.binary_alignment_loss_alpha = c.binary_align_loss_alpha
self.spk_encoder_loss_alpha = c.spk_encoder_loss_alpha
@staticmethod
def _binary_alignment_loss(alignment_hard, alignment_soft):
"""Binary loss that forces soft alignments to match the hard alignments as
explained in `https://arxiv.org/pdf/2108.10447.pdf`.
"""
log_sum = torch.log(torch.clamp(alignment_soft[alignment_hard == 1], min=1e-12)).sum()
return -log_sum / alignment_hard.sum()
@staticmethod
def cosine_similarity_loss(gt_spk_emb, syn_spk_emb):
return -torch.nn.functional.cosine_similarity(gt_spk_emb, syn_spk_emb).mean()
def forward(
self,
decoder_output,
decoder_target,
decoder_output_lens,
dur_output,
dur_target,
pitch_output,
pitch_target,
input_lens,
alignment_logprob=None,
alignment_hard=None,
alignment_soft=None,
binary_loss_weight=None,
train_aligner=True,
use_speaker_encoder_as_loss=False,
gt_spk_emb=None,
syn_spk_emb=None
):
loss = 0
return_dict = {}
if hasattr(self, "ssim") and self.ssim_loss_alpha > 0:
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
loss = loss + self.ssim_loss_alpha * ssim_loss
return_dict["loss_ssim"] = self.ssim_loss_alpha * ssim_loss
if self.spec_loss_alpha > 0:
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
loss = loss + self.spec_loss_alpha * spec_loss
return_dict["loss_spec"] = self.spec_loss_alpha * spec_loss
if self.dur_loss_alpha > 0:
log_dur_tgt = torch.log(dur_target.float() + 1)
dur_loss = self.dur_loss(dur_output[:, :, None], log_dur_tgt[:, :, None], input_lens)
loss = loss + self.dur_loss_alpha * dur_loss
return_dict["loss_dur"] = self.dur_loss_alpha * dur_loss
if hasattr(self, "pitch_loss") and self.pitch_loss_alpha > 0:
pitch_loss = self.pitch_loss(pitch_output.transpose(1, 2), pitch_target.transpose(1, 2), input_lens)
loss = loss + self.pitch_loss_alpha * pitch_loss
return_dict["loss_pitch"] = self.pitch_loss_alpha * pitch_loss
if train_aligner:
if hasattr(self, "aligner_loss") and self.aligner_loss_alpha > 0:
aligner_loss = self.aligner_loss(alignment_logprob, input_lens, decoder_output_lens)
loss = loss + self.aligner_loss_alpha * aligner_loss
return_dict["loss_aligner"] = self.aligner_loss_alpha * aligner_loss
if self.binary_alignment_loss_alpha > 0 and alignment_hard is not None:
binary_alignment_loss = self._binary_alignment_loss(alignment_hard, alignment_soft)
loss = loss + self.binary_alignment_loss_alpha * binary_alignment_loss
if binary_loss_weight:
return_dict["loss_binary_alignment"] = (
self.binary_alignment_loss_alpha * binary_alignment_loss * binary_loss_weight
)
else:
return_dict["loss_binary_alignment"] = self.binary_alignment_loss_alpha * binary_alignment_loss
if use_speaker_encoder_as_loss:
loss_se = self.cosine_similarity_loss(gt_spk_emb, syn_spk_emb) * self.spk_encoder_loss_alpha
loss = loss + loss_se
return_dict["loss_spk_encoder"] = loss_se
return_dict["loss"] = loss
return return_dict