|
from dataclasses import dataclass, field |
|
from typing import Dict, List, Union |
|
|
|
import torch |
|
from coqpit import Coqpit |
|
from torch import nn |
|
|
|
from TTS.tts.layers.align_tts.mdn import MDNBlock |
|
from TTS.tts.layers.feed_forward.decoder import Decoder |
|
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor |
|
from TTS.tts.layers.feed_forward.encoder import Encoder |
|
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding |
|
from TTS.tts.models.base_tts import BaseTTS |
|
from TTS.tts.utils.helpers import generate_path, maximum_path, sequence_mask |
|
from TTS.tts.utils.speakers import SpeakerManager |
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer |
|
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram |
|
from TTS.utils.io import load_fsspec |
|
|
|
|
|
@dataclass |
|
class AlignTTSArgs(Coqpit): |
|
""" |
|
Args: |
|
num_chars (int): |
|
number of unique input to characters |
|
out_channels (int): |
|
number of output tensor channels. It is equal to the expected spectrogram size. |
|
hidden_channels (int): |
|
number of channels in all the model layers. |
|
hidden_channels_ffn (int): |
|
number of channels in transformer's conv layers. |
|
hidden_channels_dp (int): |
|
number of channels in duration predictor network. |
|
num_heads (int): |
|
number of attention heads in transformer networks. |
|
num_transformer_layers (int): |
|
number of layers in encoder and decoder transformer blocks. |
|
dropout_p (int): |
|
dropout rate in transformer layers. |
|
length_scale (int, optional): |
|
coefficient to set the speech speed. <1 slower, >1 faster. Defaults to 1. |
|
num_speakers (int, optional): |
|
number of speakers for multi-speaker training. Defaults to 0. |
|
external_c (bool, optional): |
|
enable external speaker embeddings. Defaults to False. |
|
c_in_channels (int, optional): |
|
number of channels in speaker embedding vectors. Defaults to 0. |
|
""" |
|
|
|
num_chars: int = None |
|
out_channels: int = 80 |
|
hidden_channels: int = 256 |
|
hidden_channels_dp: int = 256 |
|
encoder_type: str = "fftransformer" |
|
encoder_params: dict = field( |
|
default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1} |
|
) |
|
decoder_type: str = "fftransformer" |
|
decoder_params: dict = field( |
|
default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1} |
|
) |
|
length_scale: float = 1.0 |
|
num_speakers: int = 0 |
|
use_speaker_embedding: bool = False |
|
use_d_vector_file: bool = False |
|
d_vector_dim: int = 0 |
|
|
|
|
|
class AlignTTS(BaseTTS): |
|
"""AlignTTS with modified duration predictor. |
|
https://arxiv.org/pdf/2003.01950.pdf |
|
|
|
Encoder -> DurationPredictor -> Decoder |
|
|
|
Check :class:`AlignTTSArgs` for the class arguments. |
|
|
|
Paper Abstract: |
|
Targeting at both high efficiency and performance, we propose AlignTTS to predict the |
|
mel-spectrum in parallel. AlignTTS is based on a Feed-Forward Transformer which generates mel-spectrum from a |
|
sequence of characters, and the duration of each character is determined by a duration predictor.Instead of |
|
adopting the attention mechanism in Transformer TTS to align text to mel-spectrum, the alignment loss is presented |
|
to consider all possible alignments in training by use of dynamic programming. Experiments on the LJSpeech dataset s |
|
how that our model achieves not only state-of-the-art performance which outperforms Transformer TTS by 0.03 in mean |
|
option score (MOS), but also a high efficiency which is more than 50 times faster than real-time. |
|
|
|
Note: |
|
Original model uses a separate character embedding layer for duration predictor. However, it causes the |
|
duration predictor to overfit and prevents learning higher level interactions among characters. Therefore, |
|
we predict durations based on encoder outputs which has higher level information about input characters. This |
|
enables training without phases as in the original paper. |
|
|
|
Original model uses Transormers in encoder and decoder layers. However, here you can set the architecture |
|
differently based on your requirements using ```encoder_type``` and ```decoder_type``` parameters. |
|
|
|
Examples: |
|
>>> from TTS.tts.configs.align_tts_config import AlignTTSConfig |
|
>>> config = AlignTTSConfig() |
|
>>> model = AlignTTS(config) |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
config: "AlignTTSConfig", |
|
ap: "AudioProcessor" = None, |
|
tokenizer: "TTSTokenizer" = None, |
|
speaker_manager: SpeakerManager = None, |
|
): |
|
|
|
super().__init__(config, ap, tokenizer, speaker_manager) |
|
self.speaker_manager = speaker_manager |
|
self.phase = -1 |
|
self.length_scale = ( |
|
float(config.model_args.length_scale) |
|
if isinstance(config.model_args.length_scale, int) |
|
else config.model_args.length_scale |
|
) |
|
|
|
self.emb = nn.Embedding(self.config.model_args.num_chars, self.config.model_args.hidden_channels) |
|
|
|
self.embedded_speaker_dim = 0 |
|
self.init_multispeaker(config) |
|
|
|
self.pos_encoder = PositionalEncoding(config.model_args.hidden_channels) |
|
self.encoder = Encoder( |
|
config.model_args.hidden_channels, |
|
config.model_args.hidden_channels, |
|
config.model_args.encoder_type, |
|
config.model_args.encoder_params, |
|
self.embedded_speaker_dim, |
|
) |
|
self.decoder = Decoder( |
|
config.model_args.out_channels, |
|
config.model_args.hidden_channels, |
|
config.model_args.decoder_type, |
|
config.model_args.decoder_params, |
|
) |
|
self.duration_predictor = DurationPredictor(config.model_args.hidden_channels_dp) |
|
|
|
self.mod_layer = nn.Conv1d(config.model_args.hidden_channels, config.model_args.hidden_channels, 1) |
|
|
|
self.mdn_block = MDNBlock(config.model_args.hidden_channels, 2 * config.model_args.out_channels) |
|
|
|
if self.embedded_speaker_dim > 0 and self.embedded_speaker_dim != config.model_args.hidden_channels: |
|
self.proj_g = nn.Conv1d(self.embedded_speaker_dim, config.model_args.hidden_channels, 1) |
|
|
|
@staticmethod |
|
def compute_log_probs(mu, log_sigma, y): |
|
|
|
y = y.transpose(1, 2).unsqueeze(1) |
|
mu = mu.transpose(1, 2).unsqueeze(2) |
|
log_sigma = log_sigma.transpose(1, 2).unsqueeze(2) |
|
expanded_y, expanded_mu = torch.broadcast_tensors(y, mu) |
|
exponential = -0.5 * torch.mean( |
|
torch._C._nn.mse_loss(expanded_y, expanded_mu, 0) / torch.pow(log_sigma.exp(), 2), dim=-1 |
|
) |
|
logp = exponential - 0.5 * log_sigma.mean(dim=-1) |
|
return logp |
|
|
|
def compute_align_path(self, mu, log_sigma, y, x_mask, y_mask): |
|
|
|
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) |
|
log_p = self.compute_log_probs(mu, log_sigma, y) |
|
|
|
attn = maximum_path(log_p, attn_mask.squeeze(1)).unsqueeze(1) |
|
dr_mas = torch.sum(attn, -1) |
|
return dr_mas.squeeze(1), log_p |
|
|
|
@staticmethod |
|
def generate_attn(dr, x_mask, y_mask=None): |
|
|
|
if y_mask is None: |
|
y_lengths = dr.sum(1).long() |
|
y_lengths[y_lengths < 1] = 1 |
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(dr.dtype) |
|
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2) |
|
attn = generate_path(dr, attn_mask.squeeze(1)).to(dr.dtype) |
|
return attn |
|
|
|
def expand_encoder_outputs(self, en, dr, x_mask, y_mask): |
|
"""Generate attention alignment map from durations and |
|
expand encoder outputs |
|
|
|
Examples:: |
|
- encoder output: [a,b,c,d] |
|
- durations: [1, 3, 2, 1] |
|
|
|
- expanded: [a, b, b, b, c, c, d] |
|
- attention map: [[0, 0, 0, 0, 0, 0, 1], |
|
[0, 0, 0, 0, 1, 1, 0], |
|
[0, 1, 1, 1, 0, 0, 0], |
|
[1, 0, 0, 0, 0, 0, 0]] |
|
""" |
|
attn = self.generate_attn(dr, x_mask, y_mask) |
|
o_en_ex = torch.matmul(attn.squeeze(1).transpose(1, 2), en.transpose(1, 2)).transpose(1, 2) |
|
return o_en_ex, attn |
|
|
|
def format_durations(self, o_dr_log, x_mask): |
|
o_dr = (torch.exp(o_dr_log) - 1) * x_mask * self.length_scale |
|
o_dr[o_dr < 1] = 1.0 |
|
o_dr = torch.round(o_dr) |
|
return o_dr |
|
|
|
@staticmethod |
|
def _concat_speaker_embedding(o_en, g): |
|
g_exp = g.expand(-1, -1, o_en.size(-1)) |
|
o_en = torch.cat([o_en, g_exp], 1) |
|
return o_en |
|
|
|
def _sum_speaker_embedding(self, x, g): |
|
|
|
if hasattr(self, "proj_g"): |
|
g = self.proj_g(g) |
|
|
|
return x + g |
|
|
|
def _forward_encoder(self, x, x_lengths, g=None): |
|
if hasattr(self, "emb_g"): |
|
g = nn.functional.normalize(self.speaker_embedding(g)) |
|
|
|
if g is not None: |
|
g = g.unsqueeze(-1) |
|
|
|
|
|
x_emb = self.emb(x) |
|
|
|
x_emb = torch.transpose(x_emb, 1, -1) |
|
|
|
|
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]), 1).to(x.dtype) |
|
|
|
|
|
o_en = self.encoder(x_emb, x_mask) |
|
|
|
|
|
if g is not None: |
|
o_en_dp = self._concat_speaker_embedding(o_en, g) |
|
else: |
|
o_en_dp = o_en |
|
return o_en, o_en_dp, x_mask, g |
|
|
|
def _forward_decoder(self, o_en, o_en_dp, dr, x_mask, y_lengths, g): |
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en_dp.dtype) |
|
|
|
if hasattr(self, "pos_encoder"): |
|
if dr.sum() > self.pos_encoder.max_len: |
|
dr = torch.floor(dr * torch.div(self.pos_encoder.max_len, dr.sum())) |
|
|
|
o_en_ex, attn = self.expand_encoder_outputs(o_en, dr, x_mask, y_mask) |
|
|
|
if hasattr(self, "pos_encoder"): |
|
o_en_ex = self.pos_encoder(o_en_ex, y_mask) |
|
|
|
if g is not None: |
|
o_en_ex = self._sum_speaker_embedding(o_en_ex, g) |
|
|
|
o_de = self.decoder(o_en_ex, y_mask, g=g) |
|
return o_de, attn.transpose(1, 2) |
|
|
|
def _forward_mdn(self, o_en, y, y_lengths, x_mask): |
|
|
|
mu, log_sigma = self.mdn_block(o_en) |
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en.dtype) |
|
dr_mas, logp = self.compute_align_path(mu, log_sigma, y, x_mask, y_mask) |
|
return dr_mas, mu, log_sigma, logp |
|
|
|
def forward( |
|
self, x, x_lengths, y, y_lengths, aux_input={"d_vectors": None}, phase=None |
|
): |
|
""" |
|
Shapes: |
|
- x: :math:`[B, T_max]` |
|
- x_lengths: :math:`[B]` |
|
- y_lengths: :math:`[B]` |
|
- dr: :math:`[B, T_max]` |
|
- g: :math:`[B, C]` |
|
""" |
|
y = y.transpose(1, 2) |
|
g = aux_input["d_vectors"] if "d_vectors" in aux_input else None |
|
o_de, o_dr_log, dr_mas_log, attn, mu, log_sigma, logp = None, None, None, None, None, None, None |
|
if phase == 0: |
|
|
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) |
|
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask) |
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en_dp.dtype) |
|
attn = self.generate_attn(dr_mas, x_mask, y_mask) |
|
elif phase == 1: |
|
|
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) |
|
dr_mas, _, _, _ = self._forward_mdn(o_en, y, y_lengths, x_mask) |
|
o_de, attn = self._forward_decoder(o_en.detach(), o_en_dp.detach(), dr_mas.detach(), x_mask, y_lengths, g=g) |
|
elif phase == 2: |
|
|
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) |
|
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask) |
|
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g) |
|
elif phase == 3: |
|
|
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) |
|
o_dr_log = self.duration_predictor(x, x_mask) |
|
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask) |
|
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g) |
|
o_dr_log = o_dr_log.squeeze(1) |
|
else: |
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) |
|
o_dr_log = self.duration_predictor(o_en_dp.detach(), x_mask) |
|
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask) |
|
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g) |
|
o_dr_log = o_dr_log.squeeze(1) |
|
dr_mas_log = torch.log(dr_mas + 1).squeeze(1) |
|
outputs = { |
|
"model_outputs": o_de.transpose(1, 2), |
|
"alignments": attn, |
|
"durations_log": o_dr_log, |
|
"durations_mas_log": dr_mas_log, |
|
"mu": mu, |
|
"log_sigma": log_sigma, |
|
"logp": logp, |
|
} |
|
return outputs |
|
|
|
@torch.no_grad() |
|
def inference(self, x, aux_input={"d_vectors": None}): |
|
""" |
|
Shapes: |
|
- x: :math:`[B, T_max]` |
|
- x_lengths: :math:`[B]` |
|
- g: :math:`[B, C]` |
|
""" |
|
g = aux_input["d_vectors"] if "d_vectors" in aux_input else None |
|
x_lengths = torch.tensor(x.shape[1:2]).to(x.device) |
|
|
|
|
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g) |
|
|
|
o_dr_log = self.duration_predictor(o_en_dp, x_mask) |
|
|
|
o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1) |
|
y_lengths = o_dr.sum(1) |
|
o_de, attn = self._forward_decoder(o_en, o_en_dp, o_dr, x_mask, y_lengths, g=g) |
|
outputs = {"model_outputs": o_de.transpose(1, 2), "alignments": attn} |
|
return outputs |
|
|
|
def train_step(self, batch: dict, criterion: nn.Module): |
|
text_input = batch["text_input"] |
|
text_lengths = batch["text_lengths"] |
|
mel_input = batch["mel_input"] |
|
mel_lengths = batch["mel_lengths"] |
|
d_vectors = batch["d_vectors"] |
|
speaker_ids = batch["speaker_ids"] |
|
|
|
aux_input = {"d_vectors": d_vectors, "speaker_ids": speaker_ids} |
|
outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, aux_input, self.phase) |
|
loss_dict = criterion( |
|
outputs["logp"], |
|
outputs["model_outputs"], |
|
mel_input, |
|
mel_lengths, |
|
outputs["durations_log"], |
|
outputs["durations_mas_log"], |
|
text_lengths, |
|
phase=self.phase, |
|
) |
|
|
|
return outputs, loss_dict |
|
|
|
def _create_logs(self, batch, outputs, ap): |
|
model_outputs = outputs["model_outputs"] |
|
alignments = outputs["alignments"] |
|
mel_input = batch["mel_input"] |
|
|
|
pred_spec = model_outputs[0].data.cpu().numpy() |
|
gt_spec = mel_input[0].data.cpu().numpy() |
|
align_img = alignments[0].data.cpu().numpy() |
|
|
|
figures = { |
|
"prediction": plot_spectrogram(pred_spec, ap, output_fig=False), |
|
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False), |
|
"alignment": plot_alignment(align_img, output_fig=False), |
|
} |
|
|
|
|
|
train_audio = ap.inv_melspectrogram(pred_spec.T) |
|
return figures, {"audio": train_audio} |
|
|
|
def train_log( |
|
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int |
|
) -> None: |
|
figures, audios = self._create_logs(batch, outputs, self.ap) |
|
logger.train_figures(steps, figures) |
|
logger.train_audios(steps, audios, self.ap.sample_rate) |
|
|
|
def eval_step(self, batch: dict, criterion: nn.Module): |
|
return self.train_step(batch, criterion) |
|
|
|
def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None: |
|
figures, audios = self._create_logs(batch, outputs, self.ap) |
|
logger.eval_figures(steps, figures) |
|
logger.eval_audios(steps, audios, self.ap.sample_rate) |
|
|
|
def load_checkpoint( |
|
self, config, checkpoint_path, eval=False |
|
): |
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) |
|
self.load_state_dict(state["model"]) |
|
if eval: |
|
self.eval() |
|
assert not self.training |
|
|
|
def get_criterion(self): |
|
from TTS.tts.layers.losses import AlignTTSLoss |
|
|
|
return AlignTTSLoss(self.config) |
|
|
|
@staticmethod |
|
def _set_phase(config, global_step): |
|
"""Decide AlignTTS training phase""" |
|
if isinstance(config.phase_start_steps, list): |
|
vals = [i < global_step for i in config.phase_start_steps] |
|
if not True in vals: |
|
phase = 0 |
|
else: |
|
phase = ( |
|
len(config.phase_start_steps) |
|
- [i < global_step for i in config.phase_start_steps][::-1].index(True) |
|
- 1 |
|
) |
|
else: |
|
phase = None |
|
return phase |
|
|
|
def on_epoch_start(self, trainer): |
|
"""Set AlignTTS training phase on epoch start.""" |
|
self.phase = self._set_phase(trainer.config, trainer.total_steps_done) |
|
|
|
@staticmethod |
|
def init_from_config(config: "AlignTTSConfig", samples: Union[List[List], List[Dict]] = None): |
|
"""Initiate model from config |
|
|
|
Args: |
|
config (AlignTTSConfig): Model config. |
|
samples (Union[List[List], List[Dict]]): Training samples to parse speaker ids for training. |
|
Defaults to None. |
|
""" |
|
from TTS.utils.audio import AudioProcessor |
|
|
|
ap = AudioProcessor.init_from_config(config) |
|
tokenizer, new_config = TTSTokenizer.init_from_config(config) |
|
speaker_manager = SpeakerManager.init_from_config(config, samples) |
|
return AlignTTS(new_config, ap, tokenizer, speaker_manager) |
|
|