indic / TTS /tts /utils /languages.py
azamat's picture
Init
6127b48
raw
history blame
4.35 kB
import os
from typing import Any, Dict, List
import fsspec
import numpy as np
import torch
from coqpit import Coqpit
from TTS.config import check_config_and_model_args
from TTS.tts.utils.managers import BaseIDManager
class LanguageManager(BaseIDManager):
"""Manage the languages for multi-lingual 🐸TTS models. Load a datafile and parse the information
in a way that can be queried by language.
Args:
language_ids_file_path (str, optional): Path to the metafile that maps language names to ids used by
TTS models. Defaults to "".
config (Coqpit, optional): Coqpit config that contains the language information in the datasets filed.
Defaults to None.
Examples:
>>> manager = LanguageManager(language_ids_file_path=language_ids_file_path)
>>> language_id_mapper = manager.language_ids
"""
def __init__(
self,
language_ids_file_path: str = "",
config: Coqpit = None,
):
super().__init__(id_file_path=language_ids_file_path)
if config:
self.set_language_ids_from_config(config)
@property
def num_languages(self) -> int:
return len(list(self.ids.keys()))
@property
def language_names(self) -> List:
return list(self.ids.keys())
@staticmethod
def parse_language_ids_from_config(c: Coqpit) -> Dict:
"""Set language id from config.
Args:
c (Coqpit): Config
Returns:
Tuple[Dict, int]: Language ID mapping and the number of languages.
"""
languages = set({})
for dataset in c.datasets:
if "language" in dataset:
languages.add(dataset["language"])
else:
raise ValueError(f"Dataset {dataset['name']} has no language specified.")
return {name: i for i, name in enumerate(sorted(list(languages)))}
def set_language_ids_from_config(self, c: Coqpit) -> None:
"""Set language IDs from config samples.
Args:
c (Coqpit): Config.
"""
self.ids = self.parse_language_ids_from_config(c)
@staticmethod
def parse_ids_from_data(items: List, parse_key: str) -> Any:
raise NotImplementedError
def set_ids_from_data(self, items: List, parse_key: str) -> Any:
raise NotImplementedError
def save_ids_to_file(self, file_path: str) -> None:
"""Save language IDs to a json file.
Args:
file_path (str): Path to the output file.
"""
self._save_json(file_path, self.ids)
@staticmethod
def init_from_config(config: Coqpit) -> "LanguageManager":
"""Initialize the language manager from a Coqpit config.
Args:
config (Coqpit): Coqpit config.
"""
language_manager = None
if check_config_and_model_args(config, "use_language_embedding", True):
if config.get("language_ids_file", None):
language_manager = LanguageManager(language_ids_file_path=config.language_ids_file)
language_manager = LanguageManager(config=config)
return language_manager
def _set_file_path(path):
"""Find the language_ids.json under the given path or the above it.
Intended to band aid the different paths returned in restored and continued training."""
path_restore = os.path.join(os.path.dirname(path), "language_ids.json")
path_continue = os.path.join(path, "language_ids.json")
fs = fsspec.get_mapper(path).fs
if fs.exists(path_restore):
return path_restore
if fs.exists(path_continue):
return path_continue
return None
def get_language_balancer_weights(items: list):
language_names = np.array([item["language"] for item in items])
unique_language_names = np.unique(language_names).tolist()
language_ids = [unique_language_names.index(l) for l in language_names]
language_count = np.array([len(np.where(language_names == l)[0]) for l in unique_language_names])
weight_language = 1.0 / language_count
# get weight for each sample
dataset_samples_weight = np.array([weight_language[l] for l in language_ids])
# normalize
dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight)
return torch.from_numpy(dataset_samples_weight).float()