|
import os |
|
from typing import Any, Dict, List |
|
|
|
import fsspec |
|
import numpy as np |
|
import torch |
|
from coqpit import Coqpit |
|
|
|
from TTS.config import check_config_and_model_args |
|
from TTS.tts.utils.managers import BaseIDManager |
|
|
|
|
|
class LanguageManager(BaseIDManager): |
|
"""Manage the languages for multi-lingual 🐸TTS models. Load a datafile and parse the information |
|
in a way that can be queried by language. |
|
|
|
Args: |
|
language_ids_file_path (str, optional): Path to the metafile that maps language names to ids used by |
|
TTS models. Defaults to "". |
|
config (Coqpit, optional): Coqpit config that contains the language information in the datasets filed. |
|
Defaults to None. |
|
|
|
Examples: |
|
>>> manager = LanguageManager(language_ids_file_path=language_ids_file_path) |
|
>>> language_id_mapper = manager.language_ids |
|
""" |
|
|
|
def __init__( |
|
self, |
|
language_ids_file_path: str = "", |
|
config: Coqpit = None, |
|
): |
|
super().__init__(id_file_path=language_ids_file_path) |
|
|
|
if config: |
|
self.set_language_ids_from_config(config) |
|
|
|
@property |
|
def num_languages(self) -> int: |
|
return len(list(self.ids.keys())) |
|
|
|
@property |
|
def language_names(self) -> List: |
|
return list(self.ids.keys()) |
|
|
|
@staticmethod |
|
def parse_language_ids_from_config(c: Coqpit) -> Dict: |
|
"""Set language id from config. |
|
|
|
Args: |
|
c (Coqpit): Config |
|
|
|
Returns: |
|
Tuple[Dict, int]: Language ID mapping and the number of languages. |
|
""" |
|
languages = set({}) |
|
for dataset in c.datasets: |
|
if "language" in dataset: |
|
languages.add(dataset["language"]) |
|
else: |
|
raise ValueError(f"Dataset {dataset['name']} has no language specified.") |
|
return {name: i for i, name in enumerate(sorted(list(languages)))} |
|
|
|
def set_language_ids_from_config(self, c: Coqpit) -> None: |
|
"""Set language IDs from config samples. |
|
|
|
Args: |
|
c (Coqpit): Config. |
|
""" |
|
self.ids = self.parse_language_ids_from_config(c) |
|
|
|
@staticmethod |
|
def parse_ids_from_data(items: List, parse_key: str) -> Any: |
|
raise NotImplementedError |
|
|
|
def set_ids_from_data(self, items: List, parse_key: str) -> Any: |
|
raise NotImplementedError |
|
|
|
def save_ids_to_file(self, file_path: str) -> None: |
|
"""Save language IDs to a json file. |
|
|
|
Args: |
|
file_path (str): Path to the output file. |
|
""" |
|
self._save_json(file_path, self.ids) |
|
|
|
@staticmethod |
|
def init_from_config(config: Coqpit) -> "LanguageManager": |
|
"""Initialize the language manager from a Coqpit config. |
|
|
|
Args: |
|
config (Coqpit): Coqpit config. |
|
""" |
|
language_manager = None |
|
if check_config_and_model_args(config, "use_language_embedding", True): |
|
if config.get("language_ids_file", None): |
|
language_manager = LanguageManager(language_ids_file_path=config.language_ids_file) |
|
language_manager = LanguageManager(config=config) |
|
return language_manager |
|
|
|
|
|
def _set_file_path(path): |
|
"""Find the language_ids.json under the given path or the above it. |
|
Intended to band aid the different paths returned in restored and continued training.""" |
|
path_restore = os.path.join(os.path.dirname(path), "language_ids.json") |
|
path_continue = os.path.join(path, "language_ids.json") |
|
fs = fsspec.get_mapper(path).fs |
|
if fs.exists(path_restore): |
|
return path_restore |
|
if fs.exists(path_continue): |
|
return path_continue |
|
return None |
|
|
|
|
|
def get_language_balancer_weights(items: list): |
|
language_names = np.array([item["language"] for item in items]) |
|
unique_language_names = np.unique(language_names).tolist() |
|
language_ids = [unique_language_names.index(l) for l in language_names] |
|
language_count = np.array([len(np.where(language_names == l)[0]) for l in unique_language_names]) |
|
weight_language = 1.0 / language_count |
|
|
|
dataset_samples_weight = np.array([weight_language[l] for l in language_ids]) |
|
|
|
dataset_samples_weight = dataset_samples_weight / np.linalg.norm(dataset_samples_weight) |
|
return torch.from_numpy(dataset_samples_weight).float() |
|
|