azamat's picture
Init
6127b48
raw
history blame
14.5 kB
from inspect import signature
from typing import Dict, List, Tuple
import numpy as np
import torch
from coqpit import Coqpit
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_fsspec
from TTS.vocoder.datasets.gan_dataset import GANDataset
from TTS.vocoder.layers.losses import DiscriminatorLoss, GeneratorLoss
from TTS.vocoder.models import setup_discriminator, setup_generator
from TTS.vocoder.models.base_vocoder import BaseVocoder
from TTS.vocoder.utils.generic_utils import plot_results
class GAN(BaseVocoder):
def __init__(self, config: Coqpit, ap: AudioProcessor = None):
"""Wrap a generator and a discriminator network. It provides a compatible interface for the trainer.
It also helps mixing and matching different generator and disciminator networks easily.
To implement a new GAN models, you just need to define the generator and the discriminator networks, the rest
is handled by the `GAN` class.
Args:
config (Coqpit): Model configuration.
ap (AudioProcessor): 🐸TTS AudioProcessor instance. Defaults to None.
Examples:
Initializing the GAN model with HifiGAN generator and discriminator.
>>> from TTS.vocoder.configs import HifiganConfig
>>> config = HifiganConfig()
>>> model = GAN(config)
"""
super().__init__(config)
self.config = config
self.model_g = setup_generator(config)
self.model_d = setup_discriminator(config)
self.train_disc = False # if False, train only the generator.
self.y_hat_g = None # the last generator prediction to be passed onto the discriminator
self.ap = ap
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Run the generator's forward pass.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: output of the GAN generator network.
"""
return self.model_g.forward(x)
def inference(self, x: torch.Tensor) -> torch.Tensor:
"""Run the generator's inference pass.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: output of the GAN generator network.
"""
return self.model_g.inference(x)
def train_step(self, batch: Dict, criterion: Dict, optimizer_idx: int) -> Tuple[Dict, Dict]:
"""Compute model outputs and the loss values. `optimizer_idx` selects the generator or the discriminator for
network on the current pass.
Args:
batch (Dict): Batch of samples returned by the dataloader.
criterion (Dict): Criterion used to compute the losses.
optimizer_idx (int): ID of the optimizer in use on the current pass.
Raises:
ValueError: `optimizer_idx` is an unexpected value.
Returns:
Tuple[Dict, Dict]: model outputs and the computed loss values.
"""
outputs = {}
loss_dict = {}
x = batch["input"]
y = batch["waveform"]
if optimizer_idx not in [0, 1]:
raise ValueError(" [!] Unexpected `optimizer_idx`.")
if optimizer_idx == 0:
# DISCRIMINATOR optimization
# generator pass
y_hat = self.model_g(x)[:, :, : y.size(2)]
# cache for generator loss
# pylint: disable=W0201
self.y_hat_g = y_hat
self.y_hat_sub = None
self.y_sub_g = None
# PQMF formatting
if y_hat.shape[1] > 1:
self.y_hat_sub = y_hat
y_hat = self.model_g.pqmf_synthesis(y_hat)
self.y_hat_g = y_hat # save for generator loss
self.y_sub_g = self.model_g.pqmf_analysis(y)
scores_fake, feats_fake, feats_real = None, None, None
if self.train_disc:
# use different samples for G and D trainings
if self.config.diff_samples_for_G_and_D:
x_d = batch["input_disc"]
y_d = batch["waveform_disc"]
# use a different sample than generator
with torch.no_grad():
y_hat = self.model_g(x_d)
# PQMF formatting
if y_hat.shape[1] > 1:
y_hat = self.model_g.pqmf_synthesis(y_hat)
else:
# use the same samples as generator
x_d = x.clone()
y_d = y.clone()
y_hat = self.y_hat_g
# run D with or without cond. features
if len(signature(self.model_d.forward).parameters) == 2:
D_out_fake = self.model_d(y_hat.detach().clone(), x_d)
D_out_real = self.model_d(y_d, x_d)
else:
D_out_fake = self.model_d(y_hat.detach())
D_out_real = self.model_d(y_d)
# format D outputs
if isinstance(D_out_fake, tuple):
# self.model_d returns scores and features
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
scores_real, feats_real = None, None
else:
scores_real, feats_real = D_out_real
else:
# model D returns only scores
scores_fake = D_out_fake
scores_real = D_out_real
# compute losses
loss_dict = criterion[optimizer_idx](scores_fake, scores_real)
outputs = {"model_outputs": y_hat}
if optimizer_idx == 1:
# GENERATOR loss
scores_fake, feats_fake, feats_real = None, None, None
if self.train_disc:
if len(signature(self.model_d.forward).parameters) == 2:
D_out_fake = self.model_d(self.y_hat_g, x)
else:
D_out_fake = self.model_d(self.y_hat_g)
D_out_real = None
if self.config.use_feat_match_loss:
with torch.no_grad():
D_out_real = self.model_d(y)
# format D outputs
if isinstance(D_out_fake, tuple):
scores_fake, feats_fake = D_out_fake
if D_out_real is None:
feats_real = None
else:
_, feats_real = D_out_real
else:
scores_fake = D_out_fake
feats_fake, feats_real = None, None
# compute losses
loss_dict = criterion[optimizer_idx](
self.y_hat_g, y, scores_fake, feats_fake, feats_real, self.y_hat_sub, self.y_sub_g
)
outputs = {"model_outputs": self.y_hat_g}
return outputs, loss_dict
def _log(self, name: str, ap: AudioProcessor, batch: Dict, outputs: Dict) -> Tuple[Dict, Dict]:
"""Logging shared by the training and evaluation.
Args:
name (str): Name of the run. `train` or `eval`,
ap (AudioProcessor): Audio processor used in training.
batch (Dict): Batch used in the last train/eval step.
outputs (Dict): Model outputs from the last train/eval step.
Returns:
Tuple[Dict, Dict]: log figures and audio samples.
"""
y_hat = outputs[0]["model_outputs"] if self.train_disc else outputs[1]["model_outputs"]
y = batch["waveform"]
figures = plot_results(y_hat, y, ap, name)
sample_voice = y_hat[0].squeeze(0).detach().cpu().numpy()
audios = {f"{name}/audio": sample_voice}
return figures, audios
def train_log(
self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument
) -> Tuple[Dict, np.ndarray]:
"""Call `_log()` for training."""
figures, audios = self._log("eval", self.ap, batch, outputs)
logger.eval_figures(steps, figures)
logger.eval_audios(steps, audios, self.ap.sample_rate)
@torch.no_grad()
def eval_step(self, batch: Dict, criterion: nn.Module, optimizer_idx: int) -> Tuple[Dict, Dict]:
"""Call `train_step()` with `no_grad()`"""
self.train_disc = True # Avoid a bug in the Training with the missing discriminator loss
return self.train_step(batch, criterion, optimizer_idx)
def eval_log(
self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument
) -> Tuple[Dict, np.ndarray]:
"""Call `_log()` for evaluation."""
figures, audios = self._log("eval", self.ap, batch, outputs)
logger.eval_figures(steps, figures)
logger.eval_audios(steps, audios, self.ap.sample_rate)
def load_checkpoint(
self,
config: Coqpit,
checkpoint_path: str,
eval: bool = False, # pylint: disable=unused-argument, redefined-builtin
) -> None:
"""Load a GAN checkpoint and initialize model parameters.
Args:
config (Coqpit): Model config.
checkpoint_path (str): Checkpoint file path.
eval (bool, optional): If true, load the model for inference. If falseDefaults to False.
"""
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
# band-aid for older than v0.0.15 GAN models
if "model_disc" in state:
self.model_g.load_checkpoint(config, checkpoint_path, eval)
else:
self.load_state_dict(state["model"])
if eval:
self.model_d = None
if hasattr(self.model_g, "remove_weight_norm"):
self.model_g.remove_weight_norm()
def on_train_step_start(self, trainer) -> None:
"""Enable the discriminator training based on `steps_to_start_discriminator`
Args:
trainer (Trainer): Trainer object.
"""
self.train_disc = trainer.total_steps_done >= self.config.steps_to_start_discriminator
def get_optimizer(self) -> List:
"""Initiate and return the GAN optimizers based on the config parameters.
It returnes 2 optimizers in a list. First one is for the generator and the second one is for the discriminator.
Returns:
List: optimizers.
"""
optimizer1 = get_optimizer(
self.config.optimizer, self.config.optimizer_params, self.config.lr_gen, self.model_g
)
optimizer2 = get_optimizer(
self.config.optimizer, self.config.optimizer_params, self.config.lr_disc, self.model_d
)
return [optimizer2, optimizer1]
def get_lr(self) -> List:
"""Set the initial learning rates for each optimizer.
Returns:
List: learning rates for each optimizer.
"""
return [self.config.lr_disc, self.config.lr_gen]
def get_scheduler(self, optimizer) -> List:
"""Set the schedulers for each optimizer.
Args:
optimizer (List[`torch.optim.Optimizer`]): List of optimizers.
Returns:
List: Schedulers, one for each optimizer.
"""
scheduler1 = get_scheduler(self.config.lr_scheduler_gen, self.config.lr_scheduler_gen_params, optimizer[0])
scheduler2 = get_scheduler(self.config.lr_scheduler_disc, self.config.lr_scheduler_disc_params, optimizer[1])
return [scheduler2, scheduler1]
@staticmethod
def format_batch(batch: List) -> Dict:
"""Format the batch for training.
Args:
batch (List): Batch out of the dataloader.
Returns:
Dict: formatted model inputs.
"""
if isinstance(batch[0], list):
x_G, y_G = batch[0]
x_D, y_D = batch[1]
return {"input": x_G, "waveform": y_G, "input_disc": x_D, "waveform_disc": y_D}
x, y = batch
return {"input": x, "waveform": y}
def get_data_loader( # pylint: disable=no-self-use, unused-argument
self,
config: Coqpit,
assets: Dict,
is_eval: True,
samples: List,
verbose: bool,
num_gpus: int,
rank: int = None, # pylint: disable=unused-argument
):
"""Initiate and return the GAN dataloader.
Args:
config (Coqpit): Model config.
ap (AudioProcessor): Audio processor.
is_eval (True): Set the dataloader for evaluation if true.
samples (List): Data samples.
verbose (bool): Log information if true.
num_gpus (int): Number of GPUs in use.
rank (int): Rank of the current GPU. Defaults to None.
Returns:
DataLoader: Torch dataloader.
"""
dataset = GANDataset(
ap=self.ap,
items=samples,
seq_len=config.seq_len,
hop_len=self.ap.hop_length,
pad_short=config.pad_short,
conv_pad=config.conv_pad,
return_pairs=config.diff_samples_for_G_and_D if "diff_samples_for_G_and_D" in config else False,
is_training=not is_eval,
return_segments=not is_eval,
use_noise_augment=config.use_noise_augment,
use_cache=config.use_cache,
verbose=verbose,
)
dataset.shuffle_mapping()
sampler = DistributedSampler(dataset, shuffle=True) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=1 if is_eval else config.batch_size,
shuffle=num_gpus == 0,
drop_last=False,
sampler=sampler,
num_workers=config.num_eval_loader_workers if is_eval else config.num_loader_workers,
pin_memory=False,
)
return loader
def get_criterion(self):
"""Return criterions for the optimizers"""
return [DiscriminatorLoss(self.config), GeneratorLoss(self.config)]
@staticmethod
def init_from_config(config: Coqpit, verbose=True) -> "GAN":
ap = AudioProcessor.init_from_config(config, verbose=verbose)
return GAN(config, ap=ap)