from typing import Generator from trainer.trainer_utils import get_optimizer class CapacitronOptimizer: """Double optimizer class for the Capacitron model.""" def __init__(self, config: dict, model_params: Generator) -> None: self.primary_params, self.secondary_params = self.split_model_parameters(model_params) optimizer_names = list(config.optimizer_params.keys()) optimizer_parameters = list(config.optimizer_params.values()) self.primary_optimizer = get_optimizer( optimizer_names[0], optimizer_parameters[0], config.lr, parameters=self.primary_params, ) self.secondary_optimizer = get_optimizer( optimizer_names[1], self.extract_optimizer_parameters(optimizer_parameters[1]), optimizer_parameters[1]["lr"], parameters=self.secondary_params, ) self.param_groups = self.primary_optimizer.param_groups def first_step(self): self.secondary_optimizer.step() self.secondary_optimizer.zero_grad() self.primary_optimizer.zero_grad() def step(self): self.primary_optimizer.step() def zero_grad(self): self.primary_optimizer.zero_grad() self.secondary_optimizer.zero_grad() def load_state_dict(self, state_dict): self.primary_optimizer.load_state_dict(state_dict[0]) self.secondary_optimizer.load_state_dict(state_dict[1]) def state_dict(self): return [self.primary_optimizer.state_dict(), self.secondary_optimizer.state_dict()] @staticmethod def split_model_parameters(model_params: Generator) -> list: primary_params = [] secondary_params = [] for name, param in model_params: if param.requires_grad: if name == "capacitron_vae_layer.beta": secondary_params.append(param) else: primary_params.append(param) return [iter(primary_params), iter(secondary_params)] @staticmethod def extract_optimizer_parameters(params: dict) -> dict: """Extract parameters that are not the learning rate""" return {k: v for k, v in params.items() if k != "lr"}